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ABSTRACT

In this work, a low-noise plasma simulation model is developed, and

applied to a series of linear and nonlinear problems associated with

electrostatic wave propagation in a one-dimensional, collisionless,

Maxwellian plasma, in the absence of magnetic field. It is demonstrated

that use of the hybrid simulation model allows economical studies to be

carried out in both the linear and nonlinear regimes with better quanti-

tative results,for comparable computing time, than can be obtained by

conventional particle simulation models, or direct solution of the

Vlasov equation.

The characteristics of the hybrid simulation model itself are first

investigated, and it is shown to be capable of verifying the theoretical

linear dispersion relation at wave energy levels as low as 10- 6 of the

plasma thermal energy. Having established the validity of the hybrid

simulation model, it is then used to study the nonlinear dynamics of a

monochromatic wave, sideband instability due to trapped particles, and

satellite growth. The simulations are performed in parameter ranges

such that detailed quantitative comparison with available theories is

possible. In particular, the transition from time-asymptotic amplitude

oscillation to continuous Landau damping is investigated for a mono-

chromatic wave as the initial wave amplitude is varied. The results,
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which include a small nonlinear frequency shift, compare favorably with

theory. The study of sideband instability confirms the applicability

of quasilinear theory at short times, and parametric coupling theory 
in

the time-asymptotic limit, and reproduces features analogous to those

observed in laboratory experiments. The growth of a satellite wave in

the presence of a large amplitude wave and a test 
wave is shown to be

explicable by a simple theory involving slow modulation of the large

amplitude wave.

It is concluded that the hybrid simulation model constitutes 
a

reliable and economical tool for use in the study of plasma 
phenomena.

It should be widely applicable to the testing of predictions 
of linear

and nonlinear theories, and the description of more complicated 
situations

which are not amenable to analysis.
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1. INTRODUCTION

This dissertation is concerned with computer simulation of electron

plasma waves in a Maxwellian plasma, in the absence of magnetic field.

The aims of our simulations are, first, to develop an economical low-

noise simulation technique, and second, to apply it to the study of

linear and nonlinear wave phenomena in a one-dimensional plasma with

periodic boundary conditions. In what follows, emphasis has been placed

on simulations for wave and plasma parameters comparable with those

assumed in available theories, and accessible in laboratory experiments.

There are two distinctly different approaches to the simulation of

plasma dynamics: first is the use of a particle simulation model in

which individual charged particles are followed, and second is direct

numerical solution of the Vlasov equation describing the charged particle

velocity distribution function. The particle simulation model has the

disadvantage that the fluctuation level is usually several orders of

magnitude higher than in an actual plasma. This stems from the fact

that it is not feasible to follow on the computer the dynamics of as

many particles as there are in a plasma. This fluctuation not only gives

rise to nonphysical effects, but also makes it difficult to study linear

and weakly nonlinear phenomena. This is particularly unfortunate since

most of the nonlinear theories to date are based on an expansion method

which is valid only in weakly nonlinear cases. Consequently, they

cannot be clearly validated by computer simulation, nor vice versa.

Direct solution of the Vlasov equation is subject to numerical instabi-

lity associated with the free-streaming term in the Vlasov equation.

This tends to limit application of the method to short-time simulations.
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It will be shown in this work that a hybrid approach, combining

features of the particle simulation model and Vlasov approach, can

avoid the foregoing difficulties, and provide reliable 
results in both

the linear and nonlinear regimes.

In Section 2, we review various types of particle simulation 
models,

and consider numerical solution of the Vlasov equation. The hybrid

simulation model is described and analyzed in Section 3, and 
results of

test runs in the linear regime are presented 
to demonstrate the feasi-

bility of high quality simulation. In Section 4, the nonlinear dynamics

of a monochromatic plasma wave are studied 
as our first application of

the model. Section 5 presents a comprehensive study of sideband 
insta-

bility in which a large amplitude wave and 
its sidebands interact

through the trapped particles to cause growth 
of the sideband waves.

In Section 6, satellite growth due to nonlinear 
interaction between the

lower and upper sidebands is studied. Some conclusions on the validity

and applicability of the hybrid simulation approach are given in

Section 7.
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2. COMPUTER APPLICATIONS TO PLASMA PHYSICS

2.1 The Vlasov Equation and Simulation Approaches

There are two ways of approaching problems in plasma physics by

use of computers. One is to use the Vlasov equation, describing the

velocity distribution function of smeared-out charges, combined with

the Maxwell equations. The other is to use a particle simulation

approach dealing with discrete charges, combined with the Newton equation

and the Maxwell equations.

The Vlasov equation,

6fi afi qi af

v (E + v X B) - 0 , (2.1)at ax v + m

coupled with the Maxwell equations,

V X B= J + B= 0,

(2.2)

DXE= Y E-0

and equations for current and charge densities,

S f i ifdv , p = ,ifdv , (2.3)

i i

is capable of describing the collective behavior of collisionless

plasmas. Here, fi is the distribution function of the i-th charged

particle species, E and B are the electric and magnetic fields,

including both time-varying and static fields, qi and m. are the1 1

particle charge and mass, and cO  is the permittivity of free space.

It is important to note that the Vlasov equation does not include
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discrete particle encounters and thermal fluctuations, whereas discrete

charge models automatically include such effects.

In the Vlasov approach, the major task is to solve Eqs. (2.1)-(2.3)

numerically, subject to appropriate initial and boundary conditions.

This line has been pursued by Knorr,l Kellogg,2 and Armstrong.3 These

authors solved the Vlasov equation,

afi fi qi E fi
-- + v s-- + -- E - , (2.4)at ax mi av1

and the Poisson equation,

dE -1 - q.f.dv , (2.5)
dx E0 1

1,3
in the study of Landau damping, and the two-stream instability at

2
large amplitudes, in a one-dimensional plasma. However, all of these

workers encountered the serious computational difficulty which stems

from the nature of the Vlasov equation, i.e., the tendency to develop

steep gradients in phase-space as time increases. To appreciate this,

consider the following simplified equation,

-- + v 0 O , (2.6)at ax

which describes free-streaming particles. By taking a single Fourier

component of f , it is seen from Eq. (2.6) that the distribution

function always has a part of the form, exp (ikvt). This represents

velocity-space oscillation which becomes finer and finer as time

increases. It is due to conversion of the space oscillations of the

initial distribution function into velocity oscillations by the shear

motion in phase-space.
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Since the gradient of the velocity distribution function increases

with time, a progressively finer grid in phase-space will be required

for accurate computation. This is the case for the difference method

used by Kellogg.2 In the case of the expansion method used by Knorrl

and Armstrong,3 the development of large derivatives of f requires a

large number of expansion terms to be used. The number of grid points,

or the number of expansion terms allowable, is limited by computer

capacity and economic considerations. The finite grid size, or trun-

cated expansion, consequently sets limits on the elapsed time during

which the simulation is accurate.

Direct solution of the Vlasov equation gives accurate quantitative

results in both the linear and nonlinear regimes only until it approaches

the limit mentioned above. The particle simulation model, on the other

hand, is free from such time limitations, and is therefore better

suited for nonlinear problems.

Computer simulation seems to have been introduced into the field

of plasma physics by Buneman,who used the charge sheet model to solve a

nonlinear problem.4  In particular, he followed the development of

electron-ion two-stream instability to show that rapid randomization of

the initially coherent streaming energy takes place in a cold collision-

less plasma. Soon afterwards, Dawson investigated the thermalization

and ergodic behavior of a system of charge sheets and found that

statistical mechanics can be applied to the system.5 He then studied

the properties of the one-dimensional plasma in thermal equilibrium,

finding good agreement with theoretical results based on statistical

mechanics. Since then, the simulation model has been improved and
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applied to a wide variety of plasma problems which are not analytically

tractable. Computer codes have been written for both electrostatic

and electromagnetic cases, with or without external magnetic field,

and in one, two, or three dimensions. Relativistic effects have also

been included.

In the charge sheet model, electrons or ions are considered to

form infinitesimally thin charge sheets, extending to infinity in two

dimensions, and moving only in the direction perpendicular to the plane

of the sheet. They are assumed to pass freely through each other. Such

a charge sheet generates electric field, E , which is discontinuous at

the sheet position, and takes constant values on each side, as shown in

Fig. 2.1. For a given boundary value, the electric field created by

many charge sheets can be calculated at any point by a simple algorithm.

For example, suppose the electric field to be given at x = 0 . The

algorithm used to find the electric field at x is

E(x) = E(0) + - (N. - N ) , (2.7)
E 1 e

where N. and N are the number of ion and electron sheets in the
1 e

interval (O,x), and a is the (positive) surface charge density of

the sheet (see Fig. 2.2). Note that the electric field is discontinuous

at the sheet position, and is not defined by Eq. (2.7). The electric

field at the sheet position is taken at the middle of the jump shown by

a cross in Fig. 2.2. Using the electric field thus computed, the Newton

equation of motion for a sheet is integrated to find its position and

velocity after a small time-step. From the new distribution of the

charge sheets, the electric field can again be calculated, and
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2 E 0

FIG. 2.1. Electric field generated by an isolated

charge sheet. a is the surface charge density.
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SH

+ - +
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++- ++
+ - + +
+ - + +

/ + - ++ -
+ - ++ -
+ - + + -
+ - + + -
+ - ++ -
+ - ++ -

E "

FIG. 2.2. Electric field calculated by Eq. (2.1).

E(0) = 0 is assumed.
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substituted in the Newton equation. Starting with a given initial

distribution of charge sheets, the behavior of the system can thus be

followed in time. When a particle leaves one end of the system, it is

reintroduced at the other end, with the same velocity that the particle

had upon leaving the system. This imposes a periodic boundary condition.

Another condition sometimes used is that of a reflecting boundary: a

particle rebounds elastically at the ends of the system. This boundary

condition can be used for study of standing waves.

In simulations of phenomena occurring on time scales for which

only electron motions need be considered, the positive ions behave as

an immobile neutralizing background. There are two ways of treating the

ions in this case. One is to place ion sheets equidistantly in space.

The other is to spread the positive charge uniformly.5 In the latter

case, the electric field resulting from equally spaced electron

sheets is as shown in Fig. 2.3.

E

FIG. 2.3. Electric field resulting from equally spaced

electron sheets and uniformly distributed positive

ion charge.
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Simple as it is in principle, the sheet model described above is

capable of simulating a wide variety of electrostatic, one-dimensional

problems. However, since the number of particles that can be handled

on modern computers is still many orders of magnitude smaller than the

numbers of charged particles in experimental plasmas, the fluctuations

appearing in the averaged quantities, such as the electric field and

mean particle velocity, are much larger in a simulation model than in

the plasma simulated. The fluctuation amplitudes can be reduced by

increasing the number of simulation particles, N , but they decrease

only as N - 1/2 . Consequently, the energy of the fluctuations in a

simulation plasma is typically many orders of magnitude higher than

that in the plasma simulated. Since the enhanced fluctuations may

cause nonphysical or exaggerated effects, considerable effort has been

made to reduce the fluctuations without increasing the number of

particles. This topic will be discussed in Section 2.3 in connection

with various more sophisticated models developed from the simple charge

sheet model just described.

In two-dimensional problems, infinitely long charged rods are

postulated, instead of charge sheets, to allow simulation in two

dimensions. In three dimensions, the particles are represented by

point charges. The electric fields created by isolated rod and point

particles are shown in Fig. 2.4.

In electromagnetic problems, for which the time-varying magnetic

field is important, a model must be employed which properly solves the

equation of charge particle motion, including a Lorentz force term,
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dv. q. dx
1 1i -1i

=- (E + v. X B) , v (2.8)
dt m. 1 dt -

1

and the Maxwell equations [Eq. (2.2)], where subscript i denotes the

particle species. The current and charge densities are obtained from

knowledge of the positions and velocities of the particles.

E E

r r2

r r

ROD POINT

FIG. 2.4. Electric field, E , vs. radial distance, r.

(a) Rod charge. q is charge per unit length.

(b) Point charge. qp is charge.

In what follows, we shall restrict ourselves to electrostatic

phenomena, and concentrate on a one-dimensional model without external

magnetic field. Therefore, we need only consider the one-dimensional

equation of motion,

dv. q. dx
1 i1

E , - v. (2.9)
dt m. dt 1

and the Poisson equation,

dE 0 _ (2.10)
dx E
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Having considered the two approaches, it is an attractive possi-

bility to develop a method which possesses the desirable features of

both of them. Specifically, it should provide a very low fluctuation

level, and retain particle discreteness effects, so that it will be

possible to study both small amplitude waves and large amplitude non-

linear phenomena. Such a 'hybrid' approach has been proposed by

Denavit.6 The main purpose of our work has been to develop this method,

and to apply it to the study of nonlinear phenomena associated with

large amplitude electron plasma waves. Section 3 is devoted to analyti-

cal and numerical study of its characteristics.

Various methods of solving the Vlasov equation are described in

Section 2.2. Detailed descriptions of a variety of particle simulation

models are given in Section 2.3.

2.2 Solution of the Vlasov Equation

2.2.1 Finite Difference Methods

Since the Vlasov equation is a partial differential equation,

probably the most straightforward approach is to approximate it by a

finite difference equation, and to solve it numerically on a computer.

This is simple, because it is a direct integration scheme, but lengthy,

because a large number of grid points are necessary.

The Vlasov equation is nonlinear since the electric field, E , is

a function of the distribution function, f . It is a hyperbolic equation

with variable coefficients. From the theory of numerical analysis, it

is known that a finite difference method for a linear, hyperbolic,

partial differential equation with constant coefficients is stable for

appropriate choice of grid size, At and Ax , and convergent to the
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exact solution in the limit At - 0 , Ax - 0 . However, there is no

guarantee of stability or convergence in the 
nonlinear, variable

coefficient case.

Consider the difference equation corresponding to Eq. (2.6) on a

grid with x = pAx, t = nAt, where p and n are integers, and
p n

fn = f(x t ). A simple difference approximation to Eq. (2.6) is
p p, n

obtained by the substitutions

n+l n n n fn

f f p+1 + p-1 ) / 2  p+1 p-1 (2.11)
at At ' ax 2Ax

This yields

fn n n n

n+l p+ l +  Ap-1 - At v p-) , (2.12)

p 2 Ax 2

which is known to be stable for IvAt/Axi < 1.7 The error in this

scheme is of second order in At and Ax . It should be noted that

the stability criterion is derived assuming that the coefficient, i.e.

v is constant, so this must be considered as a local condition 
in

velocity-space.

A popular method of calculation, because it 
gives higher order

accuracy, is the "leap-frog" scheme given by

n+l f n-1 t n f (2.13)

p Ax p+ p-1 (2.13)

which has the same stability condition IvAt/AxI < 1 . The error in

this scheme is of third order in At and Ax . However, this has the

disadvantage of being a three-time-level equation. A similar leap-frog

scheme is used for advancing particles in the particle simulation 
models

described in Section 2.3.
12



The nonlinear term, Eaf/av , in the Vlasov equation can be treated

in a similar way to the vaf/ax term. However, when the Eaf/6v term

is included, the difference equation may not be stable, even if the

free-streaming part is approximated by a stable difference scheme. In

studying two-stream instability for electrons streaming through mobile

ions, Kellogg used a stable difference scheme for Eq. (2.6), but did not

succeed in finding a stable scheme for Eq. (2.4), because of the effects

of the nonlinear term, Ebf/v .2 Various more sophisticated schemes

have been pursued to minimize and suppress the effects of the numerical

instability, including smoothing of the distribution function, and

have been used successfully.8 '9 However, no general method of circum-

venting this instability has been established; it depends very much on

the nature of the problem under study.

The difference equation for the Poisson equation [Eq. (2.5)] is

Ep+n E + x Av fp , (2.14)

i q

where Av is the velocity grid spacing, E = E(px,nAt),

fpq = f(pAx,qAv,nt) , and the subscript i in f , denoting particle

species, has been suppressed. For certain boundary conditions, it is

convenient to solve

d _-- 
(2.15)dx2 E

dx O

where E = - do/dx . A difference approximation to Eq. (2.15) is

n n n (Ax) np1 - 2p + p-1 (Ax) Op (2.16)

13



The solutions of Eqs. (2.14) and (2.16) are straightforward, and cause

no numerical instability.

It is worth noting that the difference schemes mentioned above are

"explicit" schemes, i.e., all the variables at the n-th time-step are

expressed in terms of the variables at the (n-l)th time-step, or

earlier. In an "implicit" scheme, a variable at the n-th time-step is

expressed in terms of other variables at the same time-step and earlier.

The use of the implicit scheme may make the difference equations stable,

but since a set of simultaneous linear equations has to be solved at

every time-step it may be prohibitively expensive.

2.2.2 Transform Methods

Transform methods constitute an obvious alternative to the

finite difference method. Transformation of the variables to a different

set offers the possibility of avoiding some of the difficulties

encountered in the finite difference method. Expansion in terms of

orthonormal eigenfunctions is a well-known mathematical technique,

Fourier transformation being one of the simplest and most extensively

used.

Among the advantages of using the transform method are the elimina-

tion of the partial derivatives in x and v , and of integration in

v . The resulting algebraic operations are much simpler to deal with

numerically than differentiations and integrations. Another advantage

is a relief from numerical instability. This depends on the choice of

transformation, and there is a possibility that a different type of

numerical instability is introduced. The transform method reduces

Eqs. (2.4) and (2.5) to a set of ordinary differential equations in

14



time, or to a simpler set of partial differential equations, depending

on the transformation employed. The ordinary differential equations

can be solved much more easily than the partial differential equations.

Even when one of the partial differentiations is left in the equations,

they are easier to handle from a numerical stability point of view than

the original equations.

In the following, three methods will be described. They are the

Fourier-Fourier method, the Fourier-Hermite method, and the Power

Series Expansion method. For simplicity, we shall consider a one-

dimensional, electrostatic, homogeneous plasma, without externally

applied fields, and assume that the ions form an immobile, neutralizing,

background charge. For the rest of the present subsection, we shall

use dimensionless units for length, velocity, time, etc. Equations (2.4)

and (2.5) can then be written as

f f ffd dE (2.17)+ v E (- d)
at bx av dx '

where x is in units of the Debye length, XD , v is in units of the

thermal velocity, vt , t is in units of the reciprocal of the plasma

frequency, /Wp , and E and f are also dimensionless variables.

Fourier-Fourier Expansionl,10 The distribution function, f , is

expanded in a Fourier series in x , and Fourier transformation in v

is carried out according to the following relations
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f(x,v,t) = -i exp(inkox) f dy exp(-ivy) Fn(y,t)

(2.18)

L

Fn(y,t) = dv exp(ivy) dx exp(-inkOx) f(x,v,t)

-O 0

where k 0 = 2n/L , and L is the length of the system. The electric

field, E , is expanded in a Fourier series in x

E(x,t) = En(t) exp(inkox)

-c0

(2.19)

L

En(t) = f E(x,t) exp(-inkox)dx

0

By use of Eqs. (2.18) and (2.19), we obtain from Eq. (2.17)

F (yt) + nk - F (yt) - C (Y't) = 0 ,at n O ay n k n

(2.20)
- inkEn(t) = F (O,t) ,

where Cn(y,t) is defined by

C (y,t) = m F(O,t) F n_(y,t) (2.21)

Equations (2.20) and (2.21) constitute the system of equations

which is to be solved on the computer. Note that the integral over the

distribution function in the Poisson equation [Eq. (2.17)] has disappeared.

The electric field component E is not determined uniquely by these
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equations, but is determined by the boundary conditions. For a periodic

system without external excitation, we may put E 0 = 0 .

Equation (2.20) may be solved by integration along characteristics

given by

t - t' (y - y) (2.22)

0

These are straight lines in the (t,y) plane, as shown in Fig. 2.5.

Y

At

CHARACTERISTIC
WITH SLOPE nko

(t-At, y-nkoAt)

W t

FIG. 2.5. Characteristics of Eq. (2.20) in the (t,y) plane.

The simplest numerical scheme is given by

Fn(y,t) = Fn(y - nk0At, t - At)

+ t
+ - (- nkot) C(y - nk0At, t - At) . (2.23)

0
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For an improved approximation, we may use the iterative formula,

F (S+l)(y,t) = F(y - nk 0 At, t - At)

At t(s)
+ 2k [ ( y - nAt) C n ( y - nkOAt, t - At) + yCn (y,t)] , (2.24)

where superscript s denotes the number of iterations carried out.

Equation (2.24) is obtained by replacing the last term in Eq. (2.23)

by the average of the values of Cn at the grid points (t,y) and

(t - At, y - nko t). Note that values of y in Eqs. (2.23) and (2.24)

are chosen to fall at the grid points. Values of y - nk0At do not

fall at the grid points unless by and At are chosen such that

Ay = k 0t . Therefore, some interpolation scheme must generally be

used.

Since it is not feasible to include an infinite number of terms

in Eq. (2.18) in the calculations, nor to cover the whole y-space, the

Fourier expansion is truncated at nm , and a cut-off for F (y,t) is

introduced at y = ± ym . This is equivalent to a smoothing of the

distribution function, f(x,v,t), expressed by

f(x,v,t) = J w(v')dv' wf (x')f(x + x', v + v', t)dx' (2.25)

where f(x,v,t) is the smoothed distribution function, and w (x) and

w v(v) are weighting functions given by

n

m

Wx(X) = 1 + 2 cos nkx , w (v) sin ym . (2.26)

n=l

18



The choice of the cut-off values, n and y must be made so that the
m m

half-widths of the weighting functions are small compared with charac-

teristic lengths and velocities in the plasma. The truncations do not

cause numerical instability.1 0

3,10,12,13Fourier-Hermite Expansion 1 0 1 2 1 3  Instead of the Fourier trans-

form in velocity used in the previous method, a Gram-Charlier series

in velocity may be introduced,

co a 2

f(x,v,t) = exp(inkox) exp- 2-- h(v)Zmn(t) , (2.27)

n=-c m=O

where the h (v) are the orthonormal set of Hermite polynomials defined
m

by

m 2 / 2

(v) = (-1)mexp(v 2/2) d mexp v -- (2.28)
m 1(2 /2 1/2 dv m 2

[(27) n!] v

Again k 0 = 2r/L , and L is the length of the system. Electric field

is expanded in a Fourier series according to Eq. (2.19). Substitution

of Eqs. (2.19) and (2.27) in Eq. (2.17), and use of the recursion

relations and orthogonality properties of Hermite polynomials and of

Fourier series, yields

dZ (t) ink [ml/2 Z (k) + (m + 1)1/2 Z (t
dt mn(t) +  0 m-l,n m+l,n

+ m/2 ZEnq(t)Zm~ 1 q(t) = 0 ,

(m = 1,2,3,...; n = 0, ± 1, d 2, ... ) , (2.29)
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dt Zon(t) + ink Zln(t) = 0 , (n = 0, ± 1, ± 2, ... ) , (2.30)

i(21)/4
E (t) n 0  Z n(t) , (n O) , (2.31)
n nk On

where we have put Eo(t) = 0 . The condition for reality of f(x,v,t)

requires that

Z (t) = Z (t) . (2.32)
mn m,-n

Combination of Eqs. (2.29)-(2.31) provides a set of nonlinear,

ordinary differential equations for the Z mn(t) . These may be solved

step by step, typically by the Runge-Kutta method, or some improved

technique.14

As in the Fourier-Fourier method, the infinite series expressed by

Eqs. (2.19) and (2.27) have to be truncated. However, unlike the Fourier-

Fourier method, the truncation of the infinite series [Eqs. (2.27)] in

velocity-space causes serious difficulties. Truncation of the Fourier

series can be justified provided that the perturbation amplitude is

small. However, suppose that the Gram-Charlier series is truncated at

m = M . From inspection of Eq. (2.29), it is clear that the expression

for dZmn/dt depends on Zm+1,n(t) . The truncation consequently

introduces serious inaccuracy, and therefore instability, when ZMln(t)

becomes large. Since ZMn(t) is large by the time t = M1/2/(nko) I

the results of the computation are valid only for shorter times. This

imposes a severe limitation on the usefulness of this method. A few

attempts have been made to remove it, and the reader is referred to the

relevant literature.3,10,
13
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Power Series Expansion : Consider an expansion of F (y,t) in

Eq. (2.18) in powers of y , given by

Fn(Y,t) = anmm exp - - (2.33)

m=0

where the gm are arbitrary. The exponential factor improves the con-

vergence of the series if it is truncated in the y-direction. Substi-

tuting Eq. (2.33) into Eq. (2.20), and collecting equal powers of y

gives

d 0m-1 1
d a - nk m - (m + 1) gm+l
dt mn g m-l,n gm ml',n

kko m  Oq m-l,n-q (

q=-c

(n = 0, ± 1, : 2, ... ; m = 0, 1, 2, ... )

This equation can be solved in a similar way to Eq. (2.29) obtained in

the Fourier-Hermite method. It should be noted that the coefficients

a may be shown to be equal to the Z in the Fourier-Hermite method
mn mn

except for a complex factor.

In the numerical integration, Joyce et al. have encountered the

difficulty associated with the truncation of the infinite series in

velocity space that was found in the Fourier-Hermite method.15 However,

they found that numerical solution of the linearized version of Eq. (2.34)

gave a very regular pattern for the amplitudes a for large m , as
mn

shown in Fig. 2.6. The coefficients seem to be sampled points of a
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continuous function in m . This would lead to a guess that the

(mmax + 1) coefficient may be extrapolated by polynomials, and that it

may be possible to close the system expressed by Eq. (2.34). This

method turned out to work well for the linear Vlasov equation, but

Joyce et al. found that for nonlinear cases its success depends on the

problems treated. Thus, although there is improvement over the

Fourier-Hermite method, in the sense that it stabilizes the integration

scheme, the method is still not satisfactory for simulations carried to

long times.

amxlO

6-

4-

FIG. 2.6. An example of amplitude a vs. m .

(Adapted from Fig. 1 of Ref. 15.).
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2.3 Particle Simulation Model

A number of authors have developed schemes which reduce the high

level of fluctuations characteristic of the electrostatic sheet model,

without affecting the collective behavior of the plasma. 16 - 26 The

reduction of fluctuations in these schemes is achieved by smoothing the

interaction forces between the charge sheets. The smoothing reduces

the short wavelength fluctuations arising from discontinuities in the

electric field generated by the sheets, but leaves collective phenomena

associated with long wavelengths unaffected. Since the smoothing may

modify the physics of the plasma, and perhaps introduce spurious effects,

it is important to examine very closely the detailed behavior of the

model. In this section, we shall describe various electrostatic plasma

models incorporating smoothing procedures, and discuss some of the

physical consequences of the smoothing relevant to the hybrid approach

to be treated in Section 3. All of these schemes can be used for multi-

dimensional simulations, with or without an externally applied magnetic

field, but the discussion here will concentrate on the one-dimensional

case without magnetic field.

2.3.1 Zero-Size-Particle and Nearest-Grid-Point Method

In this method, instead of treating the space variable, x

as a continuous variable when computing the electric field, the system

is divided into an arbitrary number of cells, and the electric field is

computed only at grid points corresponding to the centers of the cells.

The charge distribution from which the electric field is calculated,

through the Poisson equation, is obtained by accumulating the charge

of all the sheets in each cell at the center, regardless of their
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positions within the cell. In advancing in time, all of the particles

in one cell are accelerated by the electric field defined at the grid

point, regardless of their positions. Note, however, that the particle

position is not discretized, but is a continuous variable. This scheme

was used by Burger et al. in a study of randomization mechanisms in a

collisionless plasma.1 6 Hockney applied it in a two-dimensional simu-

lation of anomalous plasma diffusion across a static magnetic field,

17,18
using a charge rod model.

In one dimension, the electric field calculation is quite simple.

The charge distribution on the grid points is obtained by counting the

number of electron and ion sheets separately in individual cells,

multiplying them by the surface charge density, and subtracting the

results. The electric field at a given grid point is then taken at the

middle of the jump in electric field occurring at that grid point. When

ions can be assumed to be immobile, equal numbers of ion sheets are

assigned to each cell, and only the number of electron sheets needs

to be counted.

Advancing particles in time through the Newton equation may be done

by the leap-frog scheme. In one dimension this may be written, for an

electron sheet, as

e
v = Vn- - - En t , Xn = + v At , (2.35)
n+1/2 n-1/2 me n n+l n n+1/2

where v n+1 /2 and Vn-1/2 denote the velocities of the sheet at a

half time-step ahead of, and behind, the n-th time-step, respectively,

x and E are the sheet position and electric field at the n-th
n n
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time-step, me and e are electron mass and charge (magnitude), and At

is the time-step. This scheme is widely used because of its high order

accuracy [O (At)3] .

The ZSP-NGP scheme not only reduces fluctuations, but also

makes the computation much faster than for the simple sheet or rod model.

Furthermore, the gain in computational speed is made by using integer,

rather than floating-point, arithmetic on the computer. In most

computers the integer addition and subtraction are faster than the

floating-point addition and subtraction. Since the main part of the

algorithm can be written in terms of additions and subtractions, computing

time can be saved by normalizing and expressing the particle positions

and velocities, and the charge and electric field, in terms of integers.

The reader is referred to the relevant papers for more details.
2 7 ,2 8

The reduction of fluctuations can be understood as follows: the

interaction force between a charge sheet located at a grid point, and

another sheet separated by distance, x , will be as shown in Fig. 2.7(a).

The method eliminates forces acting in close encounters, whereas in the

simple sheet model there is no zero-force region. This helps to reduce

collisional effects, and fluctuations at short wavelengths, but does not

affect the collective behavior due to long range forces.

The force between two charge rods is illustrated in Fig. 2.7(b).

It is a function varying in steps. At large separations, it is a good

approximation to the force between two line charges. At close separa-

tions, however, the force vanishes, as in the one-dimensional case,

whereas the force between two line charges would tend to infinity.
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0 AX 2AX

---- SIMPLE SHEET MODEL
.- ZSP-NGP MODEL

FIG. 2.7(a). Interaction force in ZSP-NGP model, between a

charge sheet at a grid point, and another sheet at distance

x apart. (Adapted from Fig. 5 of Ref. 29.).

I

I-
2 I

-4--LINE CHARGES
-1 MODEL FORCE

01 i I I I 1 1 il , r
0 5 10 15

FIG. 2.7(b). Interaction force in ZSP-NGP model, between two

charge rods distance r apart. r is in units of cell

size h . (Adapted from Fig. 1 of Ref. 17.).
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Although the ZSP-NGP method has been used successfully, 1 6- 18 the

stepped force law shown in Fig. 2.7 may not be accurate enough, and the

zero-force region may smooth out small amplitude oscillations, even for

long wavelengths. The discontinuity in the electric field still produces

undesirable enhanced fluctuations. One way to relieve these difficulties

is to increase the number of particles and to use a finer grid. In

practice, however, it is not always feasible to increase the number of

particles and grid points to a satisfactory level. The finite-size

particle models which we shall discuss next have been developed to over-

come these difficulties, particularly in the simulation of high density

plasmas. We shall describe the Cloud-in-Cell method, Particle-in-Cell

method, Gaussian Cloud method, Multipole Expansion method, and Lewis'

method.

2.3.2 Cloud-in-Cell and Particle-in-Cell Methods

It is natural to introduce the idea of charged particles of

finite dimensions, for the purpose of improving upon the ZPS-NGP method.

In the Cloud-in-Cell method, the discontinuities are mitigated by

considering clouds of uniformly distributed charge which are assumed to

be tenuous, and to be able to pass through one another.1 9 The center

of the charge cloud is taken to be the particle coordinate, and a

spatial grid is used for computing field quantities. Key features

of the method are the prescription for determining the amount of charge

to be assigned to the grid points (charge-sharing), and the force on a

cloud from field quantities on the grid points (force-sharing). The

charge is distributed to neighboring cell centers (grid points) in

proportion to the areas the cloud occupies in the cells. The charge
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density on the grid points thus accumulated is used to compute the

electric field. The force on a cloud is calculated by averaging the

contributions from the neighboring grid points with weightings propor-

tional to the areas in the corresponding cells occupied by the cloud.

For example, in the one-dimensional case shown in Fig. 2.8(a), the

i-I I + I

(a) ONE DIMENSION

I I

Y 
I

A + I

I I I I
W-Ax

(b) TWO DIMENSIONS

FIG. 2.8. Finite-size particle located in a grid. Shading shows

assignment of charge density to grid points in CIC model.

(a) &x is cell size. H is particle size.

(b) 6x and by are cell sizes. A is area of a particle.

charge assigned to each grid point is given by

(a . (a ,+,

Pi = Pi Pl = Pc a. + ai+l = H , (2.36)
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where pc is the charge density of the cloud, H denotes the size of

the cloud, and a. represents the portion of the cloud occupying the
1

i-th cell. The extension to the two-dimensional case is shown in

Fig. 2.8(b). The charge assigned to each grid point is given by

(P P aij) P )i,j A ' i+l,j c A '

ai+1l ai,j+ (2.37)

Pi+l,j+l c A P ,j+l c A

a, + a +a +a =A ,i,j i+l,j + ai+l,j+l + ai,j+ 1  A

where A denotes the area of the cloud, and ai, j  represents the

portion of the cloud occupying (i,j) cell.

The cloud size may be either larger or smaller than, or equal to,

the cell size, It is chosen so that the particle dynamics can be

adequately represented for the problem of interest. This will be clear

from Fig. 2.9, which shows the density assigned to grid point i for

clouds of various sizes moving in the x-direction. As the cloud

size increases beyond the cell size, the resolution decreases, because

the cloud density is held constant over a distance larger than the

shortest resolvable wavelength, i.e. the cell width.

The force on the cloud is given by,

F = Ei  (one dimension)

i (2.38)

= C a E ,j (two dimensions)
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Ax/4
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Ax

1-I I i+1

FIG. 2.9. Sketch of charge density assigned to grid point

i as a finite-size particle moves in x-direction. The

size varies from 0 to 2Ax. The horizontal axis repre-

sents the position of the center of the cloud. (Adapted

from Fig. 3 of Ref. 19.).

where E.i (or Eij) is the electric field at the grid points (see

Fig. 2.8). This force-sharing scheme produces no self-force if it is used

together with the charge-sharing scheme just described. If this charge-

sharing scheme were not followed, the force averaging could lead to

incorrect acceleration of clouds.19,29

The interaction force between a cloud fixed at a grid point, and

another cloud is plotted as a function of separation in Fig. 2.10. It

will be noted that the interaction is much smoother than in the ZSP-NGP

method, and that the zero-force region is eliminated. The CIC scheme

consequently produces less collisional effects than the simple sheet
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-2AX -AX 0 AX 2AX

FIG. 2.10(a). Interaction force in CIC model, between a

cloud at a grid point and another cloud at distance x

apart. [H = Ax]. (Adapted from Fig. 6 of Ref. 29.).

F

-AX AX

FIG. 2.10(b). Interaction force in CIC model, between a

positive charge cloud at a grid point and a negative charge

cloud, at distance x apart but with the same y

coordinate. [Hx = ax]. (Adapted from Fig. 4 of Ref. 19.).
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model, and is better able to simulate small amplitude oscillations. It

has been observed by Birdsall and Fuss that the CIC method, combined

with the leap-frog algorithm, greatly improves the energy conservation

over the ZSP-NGP method for the same number of simulation particles.1 9

In the Particle-in-Cell method, proposed by Morse and Nielson, the

charge is assigned to each cell by distributing the charge of a particle

between the nearest two cells according to a linear interpolation.
2 0'2 1

The electric field is then calculated from the resulting charge distri-

bution on the grid points, in the same way as in the ZSP-NGP and CIC

methods. The force on a particle is obtained by calculating the electric

field at the particle position by linear interpolation between the

nearest two cell centers. It is easily seen that this scheme is a

special case of the CIC scheme, with the particle size equal to the

cell size.

2.3.3 Gaussian Cloud Method

Instead of a uniform charge distribution, in this method a

cloud is supposed to have a Gaussian charge distribution,

pi(x) /2 exp - i  1 (2.39)
(2TTa)l2 2a2

where x. is the position of the center of the cloud i , and a
1

represents the one-dimensional size of the cloud.

To compute the electric field from a given distribution of charge,

it is convenient to work in Fourier-transformed space rather than in

coordinate-space, i.e. in k-space rather than x-space. The Poisson
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equation then simplifies to an algebraic form, and is handled more

easily. The Fast-Fourier-Transform technique can be used to speed up

the computation.3 0

A model proposed by Dawson et al. makes use of the foregoing ideas

in the following way.22 The electric field generated by a Gaussian

cloud is obtained by the Fourier transform,

E(x) = JE(k) exp(ikx)dk , (2.40)

where E(k) is given by

ikE(k) = 1c2 exp - k 2a-- + ikx . (2.41)
2J

The force on particle i due to particle j is then given by

Fij = E (x)pi(x)dx

2 1 
2= 2 Pci J exp[ik(x - x.) - k2a2]dk (2.42)

The integral over k-space is replaced by the finite sum

k
max

Fij 2pC 2 exp(-k 2 a 2 ) sin k(xi - x.) , (2.43)

k
min

where k = 2Tn/L , n is an integer, and L is the length of the

system. To advance particle i in time, the total force on it is cal-

culated by summing the contributions from all other particles, and is

assumed to be constant during a time-step. The leap-frog scheme may be

used in this model.23 As will be shown in Section 2.3.6, the
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fluctuations with short wavelengths can be reduced substantially below

those in the simple sheet model as the value of a increases.

2.3.4 Multipole Expansion Method

The multipole expansion scheme was developed by Kruer and

24
Dawson. It was used by Denavit and Kruer,and compared with numerical

solutions of the Vlasov equation for two-stream instability and sideband

instability.11 Close agreement was obtained between the results of

the two methods. Consider a charge cloud with an arbitrary charge

distribution and a spatial grid. The location of the center of the

particle is defined by

x i = XGi + 6xi , (2.44)

where xG. is the nearest grid point location, and 8x. is the particle

coordinate relative to x . The Fourier transform of the cloud charge

density, Pi(x), of particle i is

pi(k) =fpi(x) exp(-ikx)dx

= S(k) exp(-ikx Gi) exp(-ik6xi) , (2.45)

where S(k) is the form factor, which is the Fourier transform of the

shape factor given by

S(x - xi) = pi(x) . (2.46)

Assuming k6xi << 1 , we may expand pi(x) as follows

pi(k) = S(k) exp(-ikxGi)(l - iksxi + ... ) . (2.47)
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This is equivalent to replacing the particle centered somewhere in the

cell by a particle centered at the nearest grid point, plus a dipole

there and higher-order multipole terms. Summing over a collection of

particles, and inverse Fourier-transforming the Poisson equation, yields

the electric field at the grid point.

To compute the force on a particle, given by

F.i = E(x)pi(x)dx , (2.48)

we expand- Pi(x) as follows

Pi(x) = S(x - xi)

= S(x - xGi - 8xi)

= S(x - x Gi) - 6xiS'(x - xGi) + ... (2.49)

where S' denotes a derivative with respect to x . Integrating by

parts yields

F.= fE(x)S(x - x)dx + 6x E'(x)S(x - Gi )dx + .....

(2.50)

Physically, this means that the force on a particle may be represented

by its monopole times the electric field, plus the dipole moment times

the derivative of the field, plus higher-order contributions.

The scheme just outlined is valid only if k max i << 1 . In order

for this to be satisfied, the particle size, H , has to be larger than

the cell size, Ax , because 8xi : Ax/2 and kmax H 1 . In practice,

the expansion is truncated at the dipole term, and a particle size of

several cell-lengths is necessary, i.e., if the particle size is

comparable to the cell size the simulated behavior of short wavelength
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perturbation is likely to be inaccurate. When the short wavelength

components are not important, it may be adequate to use this scheme

even for H Ax .

2.3.5 Lewis' Method

In the simulation of plasma phenomena, it is important to

check whether the model conserves energy. If there is no external

excitation, the total energy of the system should remain substantially

constant during the simulation run. Otherwise, it is to be suspected

that nonphysical effects are being introduced. There is no guarantee

that the models described so far are energy-conserving. Lewis has

presented a general method for deriving numerical approximation schemes

25,26
which guarantee energy conservation. It is based on a Lagrangian

formulation via Hamilton's variational principle. The CIC method is

closely related to a special case of the algorithms based on this

formulation. The Lewis method serves to establish both the theoretical

basis for the use of various models in plasma simulation, and to pro-

vide an alternative viewpoint on the problems involved. We shall

outline the method and show how the energy-conserving version of the

CIC scheme is derived by Lewis.

For simplicity, we consider a one-dimensional, electrostatic

plasma with no externally applied fields and neutralizing immobile ions.

The Lagrangian for this system is

* 2
=fdx'dv'f(x',v',O) eX + eo(X,t) + 1 dxE2(x,t) , (2.51)

where X[= X(x',v',t)] describes particle trajectories as functions of
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the time, t , initial position, x', and velocity, v' , the dot denotes

differentiation with respect to t , f(x,v,O) is the initial distribution

function, is the electrostatic potential, and E = -60/ x . We

approximate 0 and X by finite series

N1  N2

0(x,t) = an (t)n(x) , X(x',v',t) = Y7(t)X (x',v')

n=l ?=1

(2.52)

where n(x) and X (x',v') are linearly independent basis functions,

and n(x) must satisfy the boundary conditions. Substitution of

Eq. (2.52) into Eq. (2.51) provides a new Lagrangian which is a

function of the generalized coordinates, .n ,' y , and the generalized

velocities, . Applying Hamilton's principle,

t
2

8 dt = 0 , (2.53)

tl

for arbitrary variation of an and 7 , we obtain the Euler-Lagrange

equations,

d - , - . (2.54)

dt -t, ayt ban

These are the equations which describe energy-conserving numerical

approximation schemes. It remains to specify functions .n and X

Let the initial distribution function be a sum of the Dirac delta-

functions,
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f(x,v,O) = 6(x - x.) 6(v - v.) (2.55)

where x. and v. are the initial position and velocity of the i-th
1 1

particle. Choosing a set of X -functions as

1 (x' = x v )

X (x',v') = (2.56)

0 (otherwise) ,

implies that the initial conditions on the 7 (t) are

7 (0) = x , j (0) = v . (2.57)

Clearly, 7,(t) is the position of the t-th particle at time t . To

obtain an energy-conserving version of the CIC scheme, it is convenient

to take n(x) to be

-- x - (n-l)h] [(n-l)h < x < nh],
h

Wn(X) = - (n+l)h - x] [nh < x < (n+l)h], (2.58)

0 [otherwise]

where h = L/(N 1+1), and L is the system length. With this set of

functions, can(t) is the value of potential at x = nh .

Substituting Eqs. (2.56) and (2.58) into the Euler-Lagrange equations

[Eq. (2.54)] gives

m"" = e ai(t)[ (t)] , (2.59)
i38
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n+l(t) - 2an(t) + a-i(t) PO e

h 2 0 - oh -n[ (t)] , (2.60)

where m (x) = (d/dx) i(x) , and po is the background charge density.

Equation (2.59) is the equation of motion for the t-th particle and

Eq. (2.60) is the central difference approximation for the Poisson

equation. It is seen that Eq. (2.60) is identical to the approximation

for the Poisson equation in the CIC method. Equation (2.59) differs

from the equation of motion in the CIC method only in that a piecewise

linear function is used in place of gi7(t)] . The CIC method con-

sequently does not conserve energy. Equations (2.59) and (2.60) are

the energy-conserving version of the CIC scheme. It should be noted

that the energy conserving feature of this method is realized only in

the limit of a vanishingly short time-step. In practice, the time-step

is small but finite, so the energy conservation is not exact.

2.3.6 Finite-Size Particle and Spatial Grid Effects

In this section, we shall consider the effects of intro-

ducing finite-size particles, and a spatial grid into simulation models.

We shall follow the analyses given by Langdon3 1 and Birdsall29 and

consider, first, how longitudinal plasma oscillations are affected, and

second, how the fluctuations are reduced.

In general, finite particle size enters the analysis via the form

factor, S(k), i.e. the Fourier transform of the shape factor of the

charged particle distribution, S(x) ,

S(k) =fdxS(x) exp(-ikx). (2.61)

39 4



Using the form factor S(k) , the charge density, current density, and

force in the finite-size particle model can be written as,

Pc(k,t) = S(k)p (k,t) , J (k,t) = S(k)J (k,t)

F (k,t) = S(-k)F (k,t) , (2.62)
c p

where subscript p in p , J , and F is affixed to emphasize

that they are for a system of point particles. These relations suggest

that the theory of finite-size particles may be obtained by multiplying

the charge in the point particle theory by S(k) . This is indeed so

for the longitudinal plasma permittivity: for a one-dimensional plasma

with finite-size cloud, we have

E (k,w) = 1 + S2 (k) k dv , (2.63)

where Landau's prescription applies regarding analytic continuation.

For a Maxwellian velocity distribution, and CIC-type finite-size

particles, Eq. (2.63) becomes

S2(k) Z (
E (k,W) = 1 S (k)2

p 22 /2I2k2 \2 kv!
D t

(2.64)

sin (kH/2)
(kH/2)

where H is the size of the cloud, and Z' denotes the first derivative

of the plasma dispersion function.32 For a Gaussian cloud, such as is

used in the Gaussian Cloud method, the form factor becomes

S(k) = exp(-k 2a 2/2) . (2.65)
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Note that in the limit of vanishing size, S(k) tends to unity and the

point particle theory,i.e. the simple sheet model,is retrieved.

We have obtained solutions of the dispersion relation [E p(k, ) = 01

for point particles, and for finite-size particles. They are plotted

in Fig. 2.11. It is clear that the long wavelength oscillations are

little affected, while the short wavelength oscillations are strongly

modified.

When spatial grid effects are taken into account, the permittivity

is given by31

p 2K2 X2 e t k 2 1/2 k V
D t

S (k) = S(k) sin (kgx/2) K k sin (kAx/2)
e (kAx/2) s (kAx/2)

sin kAx 2pK = k , k = k - A , (2.66)khx Ax

where is integer.

This dispersion relation has been studied in detail by Langdon,31

who has shown that small values of XD/Ax lead to instability. This

is due to the coupling between waves with different wavelengths through

the spatial grid. He has also shown that when XD/Ax 1 , the insta-

bility is negligible, and the t = 0 term in the summation in Eq. (2.66)

is dominant. The result of our computation for dispersion characteristics

with both finite-size effects and spatial grid effects taken in account

is shown in Fig. 2.11. Only the t = 0 term has been retained in

Eq. (2.66). It will be seen that the spatial grid exerts an additional
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FIG. 2.11. Solutions of dispersion relation.

[Eq. (2.66)].
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smoothing effect on the dispersion characteristics, modifying the

behavior of short wavelength oscillations in a similar way to finite-

size effects, leaving the collective behavior at long wavelengths

almost unchanged.

Finally, we turn our attention to the thermal fluctuation spectrum.

The fluctuation spectrum of the electric field in k-space for a

point particle plasma is

(E) kBT
(> k 1 , (2.67)

8T 2 l+k2 x '

where kB  is the Boltzmann constant, and T is the temperature of the

plasma. Neglecting the coupling between perturbations due to the grid,

the fluctuation spectrum for a cloud plasma in a gridded system is

given by3 3

(E2) kBTK 2
=- 2 P (2.68)

S(K/k + K D/S 2 (k)

where K , K , and S are given in Eq. (2.66). In Fig. 2.12, the

spectrum computed from Eq. (2.68) is plotted for the CIC finite-size

particle model, and for the Gaussian Cloud model in a gridless system

(Ax - 0). The thermal fluctuation spectrum for the point particle

plasma [Eq. (2.67)] is also shown for comparison. Note that the

comparison in Fig. 2.12 is for the same number of particles. The

reduction of fluctuations in the short wavelength part of the spectrum

is apparent. An interesting feature of the plots is that the CIC

spectrum has zero-energy holes, corresponding to modes satisfying

S(k) = 0 , while the Gaussian Cloud model does not.
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FIG. 2.12. Fluctuation spectrum of electric field.

[Eq. (2.68)].
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The modification due to spatial grid effects in the CIC model is

also shown in Fig. 2.12. It will be seen that introducing a spatial

grid reduces the short wavelength fluctuations further, and creates

additional holes in the spectrum.

The analytical results of Eqs. (2.66) and (2.68) were verified

by Okuda in computer studies of the CIC model.34 Okuda also performed

a series of simulations to study the numerical instability due to a

spatial grid,35 and confirmed that the simulation is stable when the

Debye length is comparable to, or larger than, the grid size, as

predicted by Langdon.3 1

It is evident from the foregoing considerations that finite-size

particle models are capable of simulating the collective behavior of

plasma, with reduced fluctuation level, by choosing appropriate particle

and grid sizes. However, the reduction in the fluctuations in these

methods is not more than about 10 dB below the simple sheet model. It

is consequently still very noisy compared with the practical plasmas

being simulated. In Section 3, we shall describe a method which provides

a fluctuation level several orders of magnitude lower than the finite-

size particle models,
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3. LOW-NOISE HYBRID APPROACH

3.1 Comparison between the Vlasov and Particle Simulation Approaches

Before describing the hybrid approach used in our work, it is

convenient to compare here the two basic approaches to computer solution

of plasma problems discussed in Section 2. We shall do so by considering

how well the plasma dynamics can be represented, and how easy the com-

puter solution is to accomplish.

3.1.1 Plasma Dynamics

The Vlasov approach brings into question the validity of the

Vlasov equation itself: the Vlasov equation is a description of a

plasma which is correct only to lowest order in the plasma parameter,

3 -1
(nX )-  , where n is the number density, and XD is the electronic

Debye length.36 As a consequence, it describes collective effects due

to long-range Coulomb forces, but does not include particle discreteness

effects such as particle-particle encounters. Since its solution con-

tains no thermal fluctuations of macroscopic quantities, such as the

electric field, charged particle density, etc., the behavior of very

small amplitude waves can be simulated in a quantitatively accurate

manner.

In contrast, the particle simulation model, or 'particle code' as

it is often termed, incorporates the full dynamics of particles and waves,

including discreteness effects. However, fluctuations are at an

unrealistically high level, since the number of particles that a computer

can handle is many orders of magnitude less than in typical plasmas.

These large fluctuations can obscure the small amplitude oscillations

described by linear theory. Hence, quantitative results are not easily
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available in the linear regime, even though the qualitative behavior

agrees with theory; the particle code is better suited to simulation in

the nonlinear regime, where the ratio (wave field energy/particle thermal

energy) > 0.01. In this respect, it should be noted that the expansion

methods discussed in Section 2.2.2 may limit the amplitude of the

perturbations that can be handled in order to assure the rapid conver-

gence of the expanded series. It should also be noted that the expansion

methods impose a restriction on the class of perturbations that can be

treated. For example, in the Fourier-Hermite method of Section 2.2.2,

the velocity distribution function is automatically an entire function

of velocity.3 Consequently, the problem must be such that the

distribution function is describable in terms of an entire function of

velocity; we could not consider the evolution of a delta-function

distribution.

3.1.2 Ease of Computation

From the computational point of view, it is much more

difficult to solve the Vlasov equation numerically than to solve the

Newton equation. Numerical instability such as is encountered in the

finite difference method, and the Fourier-Hermite method, is difficult

to overcome. Solution of the Newton equation is not subject to this

difficulty. In addition, the algorithm for solving the Vlasov equation

is more complicated and lengthy than for the Newton equation.

One point of practical importance is that the Vlasov approach

enables different effects to be studied separately. For example, the

linearized Vlasov equation can be solved to study linear behavior alone.

The effects of nonlinearity can then be assessed by adding the nonlinear
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terms. The effect of free-streaming particles can also be studied

independently. This feature of the Vlasov approach helps materially

in understanding the physics of plasmas.

The particle code requires a very large computer memory to store

information on the positions and velocities of the particles, and on

the field variables, since it follows the motion of the particles

step-by-step in time. Even with modern, large, high-speed computers,

simulations in three dimensions may not be economically feasible, since

the number of particles that is needed,to maintain the same level of

fluctuations as in one dimension, has to be increased as N

In contrast, the Vlasov approach needs much smaller computer

memory for the time-varying field quantities on the grid points, or the

time-varying expansion coefficients, since the velocity distribution

carries information on the charged particles in highly compact form.

To ease the computational difficulties, some combination of the

two approaches would clearly be desirable. This is provided by the

hybrid approach to be described next. It is a particle simulation

model in the sense that the motions of a large number of particles are

followed in time. The particles do not keep their identities, however,

and there are similarities to the Vlasov approach in that the value of

the velocity distribution function is defined on a grid in phase-space,

as in the finite difference methods described in Section 2.2.1.

3.2 Hybrid Approach

Our model is constructed using the CIC model described in

Section 2.3.2. In addition to the usual spatial grid, we introduce a

grid in velocity-space, and represent the particles by points in
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(x-v) phase-space as shown in Fig. 3.1. The phase-space is consequently

covered with a rectangular grid of dimensions Ax, Av . The velocity

grid extends from v1  to v2 , where v 1 and v2 are chosen such

that the numbers of particles with velocities in the intervals

v < v1 or v > v2 are negligible.

In the work of Denavit, 6 the Lewis variational method2 5 ,2 6 was

used to construct a model. In the Denavit model, finite-size particles

are chosen to have a triangular spatial distribution, instead of the

uniform charge distribution of the CIC model. The numerical scheme

based on that model turned out to be more complicated, therefore more

time-consuming, than our model. In addition, although his scheme is

energy-conserving, it does not conserve momentum, whereas the CIC scheme

is formulated in such a way as to conserve momentum.3 1 The non-conserva-

tion of momentum indicates the existence of self-force, i.e., a particle

is effected by the force due to the field that is created by itself,

which is nonphysical. The energy-conserving feature of the Denavit

scheme may not be very useful in practice, since energy conservation is

exact only in the limit of a vanishingly small time-step.

In creating a plasma with a Maxwellian velocity distribution, our

model employs the following method. The particles are equally divided

into a number of velocity groups. All the particles in one group are

assumed to have the same velocity, v , and mass and charge are assigned

to them in proportion to exp (-v2 /2v2) , where vt is the electron

thermal velocity. This is shown schematically in Fig. 3.1. Since the

charge-to-mass ratio is the same for all of the particles, the accelera-

tion is also the same. One of the advantages of this method of
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generating a Maxwellian distribution by weighted particles is that

improved resolution is provided in the tail of the velocity distribution,

compared with a Maxwellian distribution with identical particles.

The system is set up at time t = 0 using the quiet start technique

to be described below, and proceeds as in a CIC model. After a certain

number of time-steps, the distribution function is reconstructed at the

grid points by periodic smoothing, and is interpreted as representing

a distribution of new discrete particles. The motions of these particles

are followed until the next reconstruction.

With these procedures in mind, we shall describe the quiet start

technique, and the periodic smoothing, which are essential parts of the

hybrid approach. As proposed by Denavit, they are used to achieve a

very low fluctuation level, and to allow the model to be applied to a

wide range of linear and nonlinear problems.

3.2.1 Quiet Start

The quiet start technique, proposed by Byers, is a method

of eliminating macroscopic fluctuations in .a particle code at early

stages of evolution.37 This is done by placing the particles only on

the equilibrium trajectories in phase-space at time t = 0 . As an

example, consider an electrostatic, one-dimensional problem with a

periodic boundary condition, in which the equilibrium particle trajec-

tories are straight lines, v = const. At time t = 0 , the particles

are loaded uniformly at the grid points in phase-space, as shown in

Fig. 3.1. We shall assume that the particles are of finite extent, as

in the CIC method of Section 2.3.2, with extension equal to the spatial

grid size, Ax . Since the charges are distributed uniformly in
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space, there is no macroscopic electric field at t = 0 . We easily

see that at subsequent times the phase-space looks the same as at

t = 0 , except that the centers of the finite-size particles are shifted

in the x-direction by distances depending on their velocities. Thus,

there continues to be no macroscopic electric field unless a perturbation

is applied.

In principle, the quiet start technique provides a noiseless

system. In practice, round-off errors due to the finite number of

digits representing the numbers in the computer introduce some fluctu-

ations. However, this level is many orders of magnitude lower than that

in the particle codes. Typically, we have obtained about 60 dB reduction.

This is quiet enough to study linear plasma behavior, and compare its

features with theoretical predictions.

Although the quiet start technique works well at early times, it

eventually causes wave growth; it ceases to be effective after a time,

2'/(km v), where km is the maximum wavenumber possible in the system.
6

This breakdown occurs because the velocity distribution of the particles

is being replaced by a set of discrete beams. Such a system is subject

to streaming instability, to be described in Section 3.3, even if the

38
envelope of the beam density is Maxwellian. Periodic smoothing may

by used to combat this instability.

3.2.2 Periodic Smoothing

Periodic smoothing constitutes a periodic averaging of the

distribution function in phase-space.6 It can be expressed by

t(x,v,t) =ff f(x,v,t)wx(x - x')w (v - v')dx'dv' , (3.1)
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where wx and wv are weighting functions for coordinate- and velocity-

space, f is the averaged distribution function, and the integration is

over the whole of phase-space. The averaging process expressed by

Eq. (3.1) causes diffusion of the distribution function. The weighting

functions are chosen so that this diffusion quenches the streaming

instability without introducing other undesirable effects. Specific

forms of the weighting functions, and their derivation, are given in

the Appendix.

In particle models with a phase-space grid such as that shown in

Fig. 3.1, the integral in Eq. (3.1) reduces to a sum over the collection

of particles, and we want to find the averaged distribution function,

f, at the phase-space grid points. If f(x',v',t) is taken to be the

mass of a finite-size particle, the center of which is located at

(x',v') at time t , then Eq. (3.1) implies that the value of I at the

(i-j) grid point, (xi,vj), is obtained by distributing the mass of each

particle among the neighboring grid points according to the weighting

prescribed by w and w This is a reconstruction of the distri-x v

bution function from a given distribution of particles. In this model,

the reconstructed distribution function is defined only at the grid

points, and is interpreted as the new particle mass located at each

grid point. Their motions are governed by the Newton equation, as in

other particle codes. Reconstruction of the distribution function does

not need to be done every time-step. It is simply done frequently

enough to suppress the streaming instability, as described in Section 3.3.
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3.3 Streaming Instability and Recurrence Phenomenon

In this section we shall discuss two phenomena associated with

the use of the quiet start technique: streaming instability, and

possibility of recurrence of the initial state.

3.3.1 Streaming Instability

Treating each beam as a continuous fluid of charged particles,

neglecting collisions, and linearizing the one-dimensional fluid

equations for electrons, yields

avv e an v an
+ V e E + N + V 0, (3.2)

at j ax m e +  j x -a

where N., Vj, nj, and v. are zeroth and first order densities and

velocities for the j-th beam. Assuming a solution of the form

A(x,t) = A(w,k) exp[-i(wt - kx)] for the first order quantities, we

have

e- iwv. + ikV.v. E , - n + kvN. + kV.n. = 0 . (3.3)
3 J me 33 3J 3 J

Coupling Eq. (3.3) with the Poisson equation,

ikE = - 2  n , (3.4)

yields the following dispersion relation for longitudinal oscillations

of the beam system

2 N.

1 = -e L (3.5)
me 0 (W-kVj)
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where we have assumed that the positive ions form an immobile neutral--

izing background.

We introduce F.(V) by
J

5F(V) = Nj(Vj) , V - V = 6 (3.6)

where the beams are spaced with equal velocity difference, 6

Ecuation (3.5) can now be written as

1 - 2 , (3.7)
S(W-kV.)

where Wp is the electron plasma frequency. Dawson has shown that,

in the limit 6 -* 0 , Eq. (3.7) may be written as the sum of an integral

and a singular term,3 8

2 2

1P- -'(V dV -- F' ) cot -(r1 f -kV k2

2 2
n WF(W/k)

+ 2 2 (3.8)
8k sin (rrW/8k)

where 9 denotes the Cauchy principal part of the integral, and

F' = dF/dV ,

In order for Eq. (3.8) to have a solution, the second and third

terms on the right hand side have to be finite when 6 - 0 . This

requirement on the third term yields

k6
Im W ± - in 6 , (3.9)2rr

which demonstrates the existence of unstable modes. Substitution of
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this, and use of a Maxwellian velocity distribution

F(V) = exp(-V2/2v2)/( 2n) /2vt , in Eq. (3.8) gives finally,

42T1/2 ) exp -z 2 ±i = 1 + kD + zZ(z) , (3.10)

(2TT )

where Z is the plasma dispersion function,32 with z = w/(21/2kvt)

The positive sign in Eq. (3.10) is to be used for Im W > 0 , and the

negative sign for Im w < 0

The dispersion relation expressed by Eq. (3.10) has two complex

conjugate roots for each value of k . Writing Wj = 0j + ij ,

tj = j8/(21/2vt) yields

8. tan 1 + kj6 ,
aj 2 1 + k2X + Re Z(j )

k6 In (4 2vt/21/2 2 (3.11)
j 2TI j

- In([l + k21 + Re Z()] 2 + LIm Z() 2

Each value of j denotes a particular beam, so there are clearly two

modes for each beam. These are the normal modes of the many-beam system,

with a Maxwellian envelope, for a given wavenumber k . Any small

amplitude macroscopic behavior can be expressed as a weighted sum of

these modes. Equation (3.11) is valid only in the limit 6 - 0 . Note

that 1j vanishes as 6 - 0.

Figure 3.2 is a computer simulation of the behavior of the

streaming instability. The total electric field energy is plotted

against time for two cases. In both, the total field energy starts
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growing almost exponentially after a certain period of time. The

observed growth rate is about 0.09wp for 8 = vt/8 , and about 0.05wp

for 6 = vt/16. From these results, we may conclude that it is possible

to carry out simulations at early times during which the field energy

associated with wave phenomena of interest is much larger than the

total energy of the fluctuating fields. In Fig. 3.2, for example, a

-4
perturbation with electrostatic energy of 10 times the thermal energy

may be studied up to Wpt - 40 for 6 = vt/8 , and longer for

6 = vt/16

In practice, 8 cannot always be made as small as is desirable,

because the smaller 6 is to be, the more particles are necessary.

Also, it is often necessary to follow the.behavior in nonlinear problems

for considerable periods of time. Making the beam spacing 8 small

enough for such a simulation may become prohibitively expensive. 
As is

shown in Section 3.4, periodic smoothing makes a long-time simulation

possible with a relatively small number of beams.

3.3.2 Recurrence Phenomenon

In a simulation using the quiet start tehcnique, a perturbation

with wavenumber k first damps to a low level at the Landau damping

rate3 , and then reappears suddenly at time t = 2-/k8 with higher

amplitude than its initial one. After its reappearance, the perturbation

decays with a damping rate slightly different from the Landau damping

rate. This is clearly demonstrated by Fig. 3.3, which was obtained from

a result of our simulation. This recurrence results from approximating

the continuous distribution function by a finite number of delta-

function beams: the perturbation with wavenumber k on each beam

58



comes back into phase after a time TR = 2-r/k8 , and with larger ampli-

tude than its initial value due to the streaming instability. This

phenomenon was also observed by Denavit.6 In the limit of infinitely

many beams, phase-mixing prevents recurrence of the initial state.

Similar recurrence phenomena have been observed in the numerical

solution of the Vlasov equation by the Fourier-Hermite method, 4 0 the

finite difference method, 4 0 and the Lewis variational method. 4 1

LANDAU
DAMPING

0

o'I,

N

"rR k8

0 TR

FIG. 3.3. Recurrence of initial state. Wavenumber and

recurrence time are given by kXD = 3H/16 , and

PR - 75. [8 = vt/7 , N = 2048, L = 32 Ax, H = Ax = XD ,
8 = AV, v1 = -4.5vt, v2 = 4.5 vt, WpAt = 0.25]
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The recurrence phenomenon has not been found to pose any problems

in our simulations to be described in Sections 4-6. For example, it is

observed that a growing perturbation does not show any irregularity at

t = TR . Another example is that of a large amplitude wave, which

involves particle trapping; as is seen in Section 4, the behavior of

the wave demonstrates no irregularity at the recurrence time, TR . We

may conclude that in strongly nonlinear cases, or in unstable situations,

the recurrence phenomenon is not significant. It should be noted that

periodic smoothing alone would not suffice to prevent the recurrence.

3.4 Diffusion in Phase-Space

Since the weighting functions mentioned in Section 3.2.2, and

derived in the Appendix, do not conserve all of the moments of the velo-

city distribution function when the smoothing expressed by Eq. (3.1)

is performed, a diffusion of the distribution function occurs in phase-

space due to reconstruction. In this section, the diffusion rate is

estimated following Denavit.6

Before smoothing, the microscopic distribution function is given

by

f(v) = f 8(v - vj) , (3.12)

where f. represents the mass of particle j ,with velocity v , and

6(v) is the Dirac delta-function. The smoothed distribution function

is

(v) = - .w(v - v) , (3.13)
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where w(v) is the weighting function, and Av is the velocity grid

size.

Introducing the Fourier transforms of f(v) and f(v) ,

H(q) =/ f(v) exp(iqv)dv = f exp(iqv) ,

H(q) = f(v) exp(iqv)dv = W(q) fj exp(iqv) ,

-O J (3.14)

where W(q) denotes the Fourier transform of the weighting function

w(v)/Av , we obtain

H(q) = W(q)H(q) . (3.15)

A plot of W(q) is shown in Fig. 3.4 for the weighting functions given

in the Appendix. Since q represents frequency of velocity-space

oscillation, Eq. (3.15) implies that the fine structure of the distri-

bution function in velocity-space is smoothed out by reconstruction.

To estimate the diffusion rate, we define

D(q) = 1 - W(q) . (3.16)

Then, after m reconstructions, we have

Hm(q) = [1 - D(q)]m H(q) . (3.17)

Since D(q) << 1 , for qAv/n >> 1 , Eq. (3.17) may be approximated in

this region by

Hm(q) - exp[-mD(q)] H(q) . (3.18)

Thus, D(q) represents the diffusion rate of a feature of scale 2n/q
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In order to suppress the streaming instability, features of scale-

length q ,-/Av have to be smoothed out. Consider a perturbation

with wavenumber k . The growth rate of this perturbation due to the

streaming instability is obtained from Eq. (3.11) as

kAy t
n , (3.19)

when Av is small, where 6 = Av has been assumed. Assuming that the

instability is suppressed by balancing this growth with the attenuation

due to diffusion, we can obtain the frequency with which reconstructio.

is necessary. Thus, from

exp t - n i- W(q) < 1 (q . (3.20)
2n AV Av

we have,

2F In(1/W)t < F ln(l/W) 1 (3.21)s k av Lln(vt/Av) (3.21

where T is the time interval within which at least one reconstruction
s

is necessary.

Substituting km = ,/x = / /D ' vt/Av = 7 , which will be used

in most of our simulations in subsequent sections, and q -r/Av ,

W(q) - 0.4 (obtained from Fig. 3.4 for the quadratic weighting function),

into Eq. (3.20), yields

LpTs - 7 . (3.22)

So far, we have only discussed diffusion in velocity-space.

Diffusion in coordinate-sapce is treated in the same way. Replacing
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v and q , by x and k , in Eqs. (3.16)-(3.18), indicates that there

is attenuation of short wavelength perturbations at a rate given by

im(k) - exp[-mD(k)] H(k) , (3.23)

after m reconstructions.

3.5 Some Tests of the Hybrid Model

To test the hybrid model, Denavit chose two-stream instability,

and obtained good agreement with results from the particle code
1 1 ,2 0 ,4 2

and the Vlasov approach.11 However, his simulations were carried out

-3 -2
at relatively high electrostatic energy levels, i.e. 10 - 10- times

-6
the total energy, which is to be compared with an order of 10 in our

tests to be described in Section 3.5.2.

We shall now present some results of test runs with our model,

first on the equilibrium behavior of a Maxwellian plasma, and then on

linear wave propagation when the system is perturbed. The results will

be compared with theoretical predictions.

3.5.1 Equilibrium Behavior

Our first numerical experiments were carried out on a

Maxwellian plasma with no applied perturbation or external excitation.

The most important parameters are the number of time-steps, N s , after

which the smoothing operation is repeated, and the beam spacing, 6

In Fig. 3.5, the total field energy is plotted against time for

8 = vt/7 . It will be seen that by increasing the frequency of

smoothing, i.e. decreasing N s , the streaming instability is suppressed;

for Ns : 32 , the field energy stays roughly constant throughout the

simulation run. To study this further, the initial energy spectrum,
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and the time averaged energy spectrum are shown in Fig. 3.6. The

energy spectrum for Ns = 32 shows that mode energy tends to increase

as time increases. For Ns = 16 and 8, the mode energy seems to stay

at roughly the same level, i.e., the streaming instability is stabilized.

This observation agrees with the rough estimate given by Eq. (3.22).

The total energy of the system, i.e., the particle kinetic energy plus

the field energy, was found to be conserved to within 0.1% up to

Wpt - 270.

In Figs. 3.7 and 3.8 are plotted analogous results to Figs. 3.5

and 3.6 for 6 = vt/14. As expected, the growth rate of the field

energy is greatly reduced compared with the case, 6 = vt/7

Figure 3.8 seems to indicate that values of N between 16 and 32 are
s

adequate to suppress the streaming instability.

The important fact here is that for stable cases the total field

-8
energy is fluctuating at a level 10 times lower than the thermal

energy of the plasma during the whole run. Since the level of fluctu-

ations in the particle model for a system of length 32XD  with 4096

-3 -2
particles is of the order of 10 - 10 times the thermal energy, we

have achieved 50 - 60 dB reduction in fluctuations.

3.5.2 Linear Wave Propagation

The purpose of this simulation was to verify predictions of

39
Landau damping for electron plasma waves. Waves were excited at t = 0

by applying the perturbations

Ax i = D cos kx. Avi = Ev t sin kxi , (3.23)

where x i ,Axi , and Av i are the position, displacement, and velocity
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perturbation of particle i , E is the amplitude, and k[= 2Tn/L] is

the wavenumber. In this simulation, only Mode 2 (n = 2, i.e., there

are two wavelengths in the system) 
was excited. The results are shown

in Fig. 3.9. For Ns 5 16, there is excellent agreement 
with the

theoretical prediction by Langdon,31 
shown by solid lines, which takes

into account finite-size particle 
effects and spatial grid effects.

Although the fluctuation amplitude in 
Fig. 3.9 increases with time,

it is important to note that the ratio of electrostatic energy 
to

22 -6

thermal energy, [(eE/meWp) /v] 
, at t = 0 is 4.25 X 10 in this

simulation. Particle simulation with such good 
quality, at such a low

electrostatic energy level, has 
not been feasible with previous 

models.

-6

For example, in order to reduce 
the fluctuation level to 10

- 6 times the

thermal energy in a particle simulation 
with the same system length,

it would require 10
3 - 104 times more particles than are used 

in this

simulation. Since the computing cost increases 
roughly in proportion

to the number of particles, it would be prohibitively expensive. 
In

contrast, the computing cost in this simulation 
was found to be less

than twice that with the corresponding 
CIC model. Suppose the smoothing

operation is performed every 
16 time-steps. One smoothing operation in

our computer code takes about 7 
sec on an IBM 360/67 for 8192 particles.

It is equivalent to an increase of 
about 0.44 sec per time-step. Since

it takes our computer code about 
0.75 sec per time-step for the CIC

model with 8192 particles and a system 
with 128 cells, the total com-

puting time per time-step is about 
1.2 sec.

In addition to our check on temporal Landau 
damping of a signal,

we have verified the predicted linear 
dispersion characteristics of
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electron plasma waves. The results are shown in Fig. 3.10, and agree

well with theory. The initial perturbations were applied for Modes 7-20

with random phases. The electrostatic energy of the individual modes

-6
excited was about 4 x 10 times the thermal energy at t = 0 .

The simulation results presented in this section serve to demon-

strate that the hybrid approach provides quantitatively accurate results

on the collective behavior of plasma in the linear regime. Since there

is no reason why it should not be equally effective in the nonlinear

regime, for which analytical results are not so readily available, the

hybrid approach is clearly a powerful tool for plasma simulation. In

succeeding sections, we shall employ it in the study of a number of

nonlinear problems.
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4. NONLINEAR BEHAVIOR OF MONOCHROMATIC PLASMA WAVES

4.1 Introduction

In Section 3.5.2, we have studied numerically the collisionless

damping to which small amplitude longitudinal electron plasma waves are

subject. This phenomenon is due to wave-particle interaction: charged

particles moving faster than the wave transfer energy to it, while those

moving slower absorb wave energy. In a Maxwellian plasma, where there

are less fast particles than slow ones in the neighborhood of the wave

phase velocity, a net absorption of energy by the particles occurs.

Although first studied by Landau in 1946,39 the predicted damping was

not verified in laboratory experiments until about ten years ago.

43-46
Spatial damping was then observed both for electron waves, and

47
ion waves. It was also verified that the measurements of wave disper-

sion agree with theoretical predictions.

Since plasma is a highly nonlinear medium, the linearized analysis

gives only a limited description of its behavior. The question arises

of what will happen to Landau damping and wave dispersion when the wave

amplitude is increased. Theroetical studies of this question were first

made by O'Neil,48 and Al'tshul and Karpman.49 These authors found that

the amplitude changes in time in an oscillatory manner, rather than being

continuously attenuated. The amplitude oscillation is due to periodic

exchange of energy between the wave and electrons trapped in the potential

wells of the wave. The exchange occurs on a time scale of i/wB , where

WB[= (ekE0 /me) 1/2 is the bounce frequency of an electron oscillating at

the bottom of a potential well, k is the wavenumber, and E0  is the

wave electric field amplitude.
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The foregoing theories establish that Landau damping is valid only

for short times, before particle trapping comes into play. The smaller

the initial amplitude, the longer is the time for which the Landau

solution applies. Because of analytical difficulties in dealing with

phenomena involving particle trapping, the theoretical studies have been

limited to special cases. For example, O'Neil assumed that the ampli-

tude variation is so small that it may be neglected in calculating the

particle orbits. His theory is consequently valid only for

7L/WB << 1 , where 7L is the Landau damping rate. The same restriction

applies to the theory of Al'tshul and Karpman.4 9 Bailey and Denavit

have taken into account the effects of the slowly-varying amplitude,

and obtained essentially the same amplitude oscillation, except that

the time at which the amplitude begins to grow again after the initial

damping is delayed. 5 0 However, they still assume 7L/ B << 1 . Gary

has treated the case YL/WB > 1 analytically, and shown that the wave

starts to decay at a rate smaller than the Landau damping rate at a

time when the linear theory is expected to break down.5 1

The restriction on 7L/WB was removed in work by Sugihara and

Kamimura, who investigated the behavior of Landau damping for a wide

range of YL/wB values.52 Recent work by Oei and Swanson has also

taken into account the time-varying property of the bounce frequency. 5 3

They have obtained solutions for 0 < 7L / B  1 which are similar to

those of Sugihara and Kamimura. An important feature of the contribu-

tions by Sugihara and Kamimura,and Oei and Swanson,is that their theory

is self-consistent: it includes the interaction of the electric field

and the averaged particle velocity distribution. None of the other
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theories mentioned so far is self-consistent. For example, O'Neil

calculated the effect of the electric field on the particles, but not

vice versa.

All of the theoretical studies discussed so far assume that the

electric field is so small that the distribution function in the

resonant region can be expressed by a Taylor expansion about the wave

phase velocity up to the first order term in velocity. This condition

may be written as W/B (vt)2 , where v is the phase velocity

of the wave (w,k) . This is such a stringent condition that it is not

easy to meet in laboratory experiments, especially when also satisfying

the condition 7L/WB << 1

A few experimental data on Landau damping of large amplitude waves

have been reported. Malmberg and Wharton5 4 observed spatial amplitude

oscillation in qualitative agreement with the O'Neil theory48 modified

to fit the spatial case by Lee and Schmidt.55 Oei and Swanson compared

their theoretical results with the experiments of Malmberg and Wharton,

and found agreement on the amplitude oscillation lengths but not on the

detailed behavior of the amplitude.53 One of the reasons may be that

their experimental parameters do not meet the condition

W/B >(Vp/Vt)
2 . Specifically, they have 7L/WB - 0.1 and

/WB (vp/t)2 for the results which exhibit amplitude oscillation.

Franklin et al. have made detailed measurements of the spatial dependence

of amplitude for electron plasma waves with different initial amplitudes,

56
i.e., for different values of WB 5 However, for large initial ampli-

tude, they failed to obtain results in agreement with the theory. This

was ascribed to the appearance of sideband growth due to trapped particle
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instability.5 7 Their experimental parameters for the measured results

corresponding to 7L/WB 0.45 yield w/WB < 4(v /vt)2 . This suggests

that comparison of the available theories with the experiments is

inappropriate.

In view of the foregoing difficulties, computer simulation suggests

itself as a means of bridging the gap between the theoretical assumptions

and readily attainable experimental parameters. It allows conditions to

be studied for which analytical approaches are not tractable. Such

simulations have been carried out by Knorr,l using the Fourier-Fourier

method (see Section 2.2.2), by Armstrong,3 using the Fourier-Hermite

method (see Section 2.2.2), and by Dawson and Shanny,58 using the particle

simulation model. Knorr observed a decrease in the damping rate for

large amplitude waves at times such that WBt M1 . Armstrong considered

the same problem and found in addition to Knorr's results that large

amplitude waves grow again after damping initially. He also found that

the initial damping of a large amplitude wave is stronger than is

predicted by the Landau theory. A similar observation of the enhanced

initial damping was made by Dawson and Shanny. It is not certain,

however, to what extent the large fluctuations inherent in particle

simulation models influenced the behavior of the wave: in their com-

putation, the field energy of the wave is of a comparable order of

magnitude to that of the total fluctuation energy.

One of our purposes has been to use the hybrid model described in

Section 3 to investigate the nonlinear behavior of longitudinal mono-

chromatic plasma waves more comprehensively than has been possible

previously. The hybrid approach is very well suited to this study
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because it does not generate troublesome fluctuation, and is free from

numerical instabilities of the type encountered in the Vlasov approach

(see Section 2.2). In Section 4.2, we shall consider amplitude oscil-

lation and Landau damping.

Another of our aims has been to investigate the nonlinear frequency

shift of electron plasma waves. In a plasma of infinite extent, or of

finite length with periodic boundary conditions, the frequency of a

wave of large amplitude deviates from that of a small amplitude wave

due to nonlinear effects. In an experimental plasma, in which a wave

is excited at a fixed frequency, the shift should occur in wavelength

instead of frequency.

The frequency shift has been studied analytically by Manheimer

59 60 61 62
and Flynn, Morales and O'Neil, Dewar, and Lee and Pocobelli,

and found to be proportional to E /2 So far, there has been no
0

report of laboratory observations of nonlinear wavelength shift for

comparison with these theories. In Section 4.3, we shall test the

theoretical predictions of nonlinear frequency shift against computer

simulations carried out by use of the hybrid model.

4.2 Amplitude Oscillation and Landau Damping

4.2.1 Computations

We have performed a series of computer simulations to demon-

strate the nonlinear behavior of monochromatic electron plasma waves in

a collisionless plasma. The electrostatic energy of the waves in these

simulations was of the order of 10- 4 times the thermal energy. This

is about two orders of magnitude smaller than in the simulations of
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Dawson and Shanny.58 Some of the simulations by Knorr, 1 and Armstrong,3

are in our range of energy. The computations have not, however, been

carried out for long enough times to demonstrate amplitude oscillation.

In Fig. 4.1, we demonstrate the amplitude oscillation phenomenon

for a large amplitude wave predicted by O'Neil. 4 8  In this simulation,

8192 particles were followed in a system 64 XD long, divided into 64

cells. The continuous Maxwellian velocity distribution was replaced

by 128 beams vt/14 apart. Velocity-space was covered from

-4.25 vt - 4.82 v t by a grid with mesh size equal to the beam spacing.

Periodic smoothing was carried out after every 16 time-steps, a time-

step being 0.25/p . Mode 3 was excited initially according to

Eq. (3.23), and the evolution of the amplitude was followed in time,

with periodic boundary conditions applied in space. It is clear from

Fig. 4.1 that the amplitude oscillates, as predicted.

The initial amplitude of the wave was eE /meVt p  3.4 X 10- 2

corresponding to a bounce frequency of wB/Wp 0.09. The measured

initial damping rate is YL/p 0.0119. These combine to give

YL/WB - 0.13. The measured frequency is /wp 1.15. The corresponding

wave phase velocity is v /vt 3.91, so that W/wB 13 and

(vp/Vt)2 15 are of the same order.

Figure 4.2 shows the temporal behavior of the distribution function,

in the vicinity of the wave phase velocity, averaged over space. The

changes in the distribution are relatively small; for example, at

wpt = 48, the ratio of the peak value to the maximum value of the (nearly)

Maxwellian distribution is of the order of 10-3. A bump is formed in

the distribution for Wpt - 48, and reappears for pt - 144 and 240.
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Comparison with Fig. 4.1 indicates that these times correspond approxi-

mately to minima in the amplitude. The height of the bump becomes

progressively smaller on its reappearances, because of phase-mixing of

the trapped particles.48 A similar bump was observed by Armstrong,

and considered to cause growth of waves with phase velocities lying in

that region of the bump that has positive slope.3

The bump on the tail of the distribution function has spatial

structure. This is shown in Fig. 4.3, and may be contrasted with the

initially spatially homogeneous distribution whose evolution is con-

sidered in the quasilinear theory of a warm beam-plasma system.
6 3 ,6 4

The figure shows that the particles rotate by a half-cycle in phase-

space from W t = 48 to 96, and another half-cycle from W t = 96 to 144.
p p

The cycle is repeated for Wpt = 144 to 240. It is clear that the

phase-space structure becomes progressively less distinct as time

increases.

In Fig. 4.4, we present the results of a series of simulations for

various values of the initial electric field, E0 , expressed in terms of

the convenient parameter 7L/B , where we recall that B = (ekE0/me) 1/2

Only one mode was excited at t = 0 for each simulation run, and a

different mode and amplitude were used in each run. The amplitude was

normalized to unity at t = 0 in the plots. It will be seen from

Fig. 4.4 that amplitude oscillation occurs for small values of 7L/WB

and that the oscillation becomes less pronounced, with Landau damping

extended for a longer period, as 7L/WB increases. The fluctuations

in the curves for large values of 7L/WB are due to the round-off

errors made in representing numbers by a finite number of digits in
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the computer. The mode numbers and other parameters used in this

series of simulations are tabulated in Table 4.1.

TABLE 4.1. Parameters in the series of
simulations presented in Fig. 4.4.

Mode n L/XD WB/Wp 7L/WB (w/WB)/(Vp/t )2

a 6 128 0.092 0.13 0.9

b 7 128 0.097 0.34 1.0

c 7 128 0.061 0.55 1.5

d 2 32 0.093 0.71 1.3

e 2 32 0.079 0.83 1.4

f 1 15 0,092 0.93 1.4

4.2.2 Comparison with Theory

There are a number of theories available with which we can

make comparisons: the linear theory of Langdon,31 the amplitude oscil-

lation theory of O'Neil,48 and Bailey and Denavit,50 and the nonlinear

theory of Sugihara and Kamimura.
5 2

Langdon: The theoretical values of the damping rate, 7L , and

frequency, WL , are calculated from Eq. (2.66), which includes finite-

size particle and spatial grid effects. Retaining only the = 0

term in the summation, we obtain 7L/ p = 0.0118 , and WL/wp = 1.145

for Mode 3 plotted in Fig. 4.1. We see very good agreement with the

measurements described in Section 4.2.1. The theoretical predictions

for each mode presented in Fig. 4.4 have also been found to agree with

the measured initial damping and frequency with errors of less than 1%.
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O'Neil: We may compare the theoretical predictions of O'Neil with

the simulation results shown in Fig. 4.1. By solving the Vlasov equation

for a large amplitude wave, O'Neil obtained the time-dependent damping

rate,48

2 . -nt
() 2nT sin F(7(t) = 7 64 d)

n 5 )2 2n -2n
SfF(K) (+Q )(+Qn=O

0

2 (2n+l)t
(2n+1) K sin-F

+ T (4.1)
F(2 Q2n+)( + Q -

2 n - 1

where F(K) [=F(K,TT/2)] is the complete elliptic integral of the first

kind, Q = exp -F[ (1-K2 )/2]/F(K) , and T = 1/wB . It can be shown

that y(t) , given by Eq. (4.1), reduces to the Landau damping rate in

the limit t/T << 1 . In the time-asymptotic limit, y(t) vanishes due

to phase-mixing, and a Bernstein-Green-Kruskal (BGK) mode6 5 is formed.

In contrast, the solution of Al'tshul and Karpman, obtained by using the

quasilinear approximation, does not demonstrate the phase-mixing but

49
predicts that the amplitude continues to oscillate. O'Neil has indi-

cated, however, that it is not certain whether their solution is correct

48
to order 7LT .

We have computed Eq. (4.1), including terms up to n = 3 . We have

substituted the numerical value 7L/Wp = 0.0119 obtained from our com-

puter simulation (Fig. 4.1). For the bounce frequency, we have used

WB/Wp = 0.09, calculated from the initial 
amplitude in the same simu-

lation (Fig. 4.1). The amplitude variation thus obtained is plotted
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in Fig. 4.1. After damping initially, the wave starts to grow somewhat

earlier than it does in the simulation. This can be ascribed to the

change in wave amplitude, which was not taken into account by O'Neil.

Bailey and Denavit: These authors incorporated the effects of

slowly-varying wave amplitude to lowest order in &/c2  , where

a(t) = [ekE(t)/mel , WB = a(O) , and & = d/dt , and obtained the

following set of equations describing the time evolution of the ampli-

tude,50

dc 1 61 1 T uT 7L
dt ~ i- 4 IR 

+ IR
dt =1-LwB/ 7LB 2 R R 2TuwB

x [cos 2WBt - 2WBt - Si(2wBt)I

u (4.2)

Si(u) = sine de (4.2)

0

T uT
where the quantities IR  and IR are given by

1 t

T K(2n-)(QQ0) (2n-1) a(t')dt'I (2n-1 )(QQ)nl sin d
Sf F(K)F(K )(+Qn )(+Q f
n10 0

(4.3)

1 t

uT n(QQ0n sin (t')dt' d'

n=l 0 OK F(K)F(KO)(+Q ( 2 )(l+Q n) K (t')F[(

(4.4)
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The values of K0 and K(t') for given values of K and t in

Eq. (4.3) are obtained from

a[E(K) - (1-K2)F(K)] = const , (4.5)

while those in Eq. (4.4) are obtained from

) const , (4.6)

where E(K)[ = E(K,,r/2)] is the complete elliptic integral of the

second kind. We have solved Eqs. (4.2)-(4.6) numerically, for the same

values of 7L and WB used above, and with the results plotted in

Fig. 4.1. There is very good agreement between the theory and the

simulation. We note, however, that there is a slight difference in

amplitude, and that the phase-mixing is somewhat slower in the simulation

results than the theory predicts. These differences are probably due,

first, to the fact that the condition, W/WB >> (Vp/vt)2 , is not satis-

fied in the simulation, and second, that the theory of Bailey and

Denavit is not self-consistent.

Sugihara and Kamimura: These authors derived from the Vlasov

equation a set of integro-differential equations which describe the

behavior of the amplitude of a monochromatic wave. Numerical solutions

of these integro-differential equations demonstrated amplitude oscilla-

tion for 7L/WB << 1 , and Landau damping for 7L/WB >> 1.

We may make a comparison between our simulation results and the

theoretical results of Sugihara and Kamimura. First, the behavior of

the distribution function obtained in the simulation (Fig. 4.3) may be

compared qualitatively with that from the theory. Sugihara and Kamimura
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presented phase-space plots for yL/WB = 0.1 at three different times,

corresponding to the first point of minimum amplitude, the first maximum,

and to a point where the amplitude nearly ceases to oscillate (see

Figs. 5-7 of Ref. 52). In our simulation, these times correspond to

Wpt - 48, 96, and 240. We find that their results and ours are consis-

tent in the amount of rotation in phase-space, and the distinctive

pattern. However, in our simulation, the wave amplitude still shows

oscillatory behavior for W t - 240, in contrast to the solution of

Sugihara and Kamimura. For w t > 240, our results show continuing

particle rotation in phase-space, and a tendency to develop a circular

plateau (see Fig. 4.3, w t = 312). This is consistent with the O'Neil

solution in the time-asymptotic limit, i.e., formation of a BGK mode.

Next, we may compare the simulation results given in Fig. 4.4

with those of Sugihara and Kamimura. Some of their results are reproduced

in that figure. First, we note that their calculation shows that, for

7L/WB = 0.i, the amplitude approaches a constant value after nearly two

periods of oscillation, although the distribution function still retains

nonuniform features. In our simulation, however, the amplitude oscilla-

tion lasts more than two periods, and does not seem to die out so

quickly. This fact seems to be in at least qualitative agreement with

a nonlinear spatial Landau damping experiment by Malmberg and Wharton5 4

in which there was no clear sign of phase-mixing. A similar feature of

this persistent amplitude oscillation was also observed in the behavior

of an externally excited large amplitude wave in a simulation of side-

band instability by Denavit and Kruer.11 Second, we recall that

Sugihara and Kamimura found that there is a critical value of
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'L/WB = 0.77 , which separates waves into those with oscillatory behavior

(YL/WB < 0.77), and those which are continuously 
damped (7L/WB > 0.77).

Figure 4.4 indicates that there is no such critical value below

7L/WB = 0.93. Third, we note that there is a tendency 
in our simulation

results for the amplitude to decrease to a lower level, for a given

value of 7LWB , than is predicted by the theory of Sugihara and

Kamimura; the first maximum is also lower than the theory predicts.

Although the simulation results given in Fig. 4.4 are similar to the

theoretical results obtained by Sugihara and Kamimura, it is important

to note that in our simulations w/WB (vp/Vt) 2 , whereas they implicitly

assumed that W/WB >> (vp/vt)2

4.3 Nonlinear Frequency Shift

4.3.1 Computations

In Fig. 4.5, we show the variation of the nonlinear frequency

shift of electron plasma waves as a function of the electric field

amplitude. In this simulation, 4096 particles were followed in a system

50 XD  long, divided into 64 cells. The continuous Maxwellian velocity

distribution was replaced by 64 beams spaced vt/7 apart. Velocity-

space was covered from -3.79 vt - 5.21 vt by a grid with mesh size

equal to the beam spacing. Periodic smoothing was carried out every

16 time-steps, a time-step being 0.25/w . Periodic boundary conditions

were applied in space.

Mode 3 was excited initially according to Eq. (3.23), with amplitude

(eEo/mevtWp) varying from small values (9 X 10-3 ), which exhibit Landau

damping, to large values (3 X 10-1) such as were studied in the simula-

tions of Dawson and Shanny.
5 8 For each simulation with different
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amplitude, the frequency of Mode 3 was measured by computing the total

amount of phase change in the Fourier transform of the electric field

between Wpt = 6 and 60. The frequency shift plotted in Fig. 4.5 was

then obtained by subtracting the linear frequency, WL = 1.247 p ,

obtained from Eq. (2.66), from the measured frequency. Except for very

small amplitudes, the nonlinear frequency shift is proportional to

E/2 , and given by

SWB
= 0.006 - 0.2 -- (4.7)

Wp wp

To check the dependence of this result on the beam spacing, the simula-

tions were repeated with the beam spacing halved, and the same number of

smoothing operations. The differences in frequency shift were not

more than 3%.

A significant fact to note here is the high degree of accuracy

with which it was possible to determine the frequency, and frequency

shift. The model based on the hybrid approach is, therefore, much more

efficient than a particle code in terms of computing cost for this

measurement.

4.3.2 Comparison with Theory

Manheimer and Flynn5 9 examined the self-consistency of the

O'Neil solution for the time-asymptotic state48: they studied whether

the potential created by the O'Neil solution satisfies the Poisson

equation. They found that it is approximately self-consistent if a

frequency shift given by
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6W e E O ) 1 / 2 ( a )2_ 2( E4 .8

mek k 2 m O U (4.8)

initial distribution function, and E is the linear plasma permittivity.

In deriving Eq. (4.8), Manheimer and Flynn only considered the trapped

particles with simple harmonic motions, i.e., those near the potential

wells of the wave, and the untrapped particles with straight line orbits.

Morales and O'Neill solved an initial value problem to find the time-

dependent shift in the complex frequency of the wave.60 They took into

account the exact trajectories for both the trapped and untrapped

particles, and obtained a frequency shift which varies in an oscillatory

manner and approaches a constant value in the time-asymptotic limit,

Their time-asymptotic frequency shift is expressed in the same form as

Eq. (4.8) except that 1 is given by

1

16 -K[2E(K)- F(K) 2 2 K2E(k)-F( ) F(K)2
=1f dK K2E(K) + F(K)] 2  

) 1.63
SF(Ki) 6 F()

(4.9)

This result is more accurate than that of Manheimer and Flynn, who

treated particle trajectories in the approximation mentioned above.

Lee and Pocobelli predicted frequency shifts for waves with

vp/vt > 4 up to about 50% larger than those predicted by Morales and

O'Neil. These were obtained by including effects of electrons not in

the vicinity of the phase velocity of the wave.62 In contrast to these

theories treating the case in which the wave is switched on suddenly

at t = 0 , Dewar considered the case of an adiabatically excited wave,
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i.e., the wave was turned on gradually.
6 1 He obtained a time-asymptotic

frequency shift similar to that expressed by Eq. (4.8), 
but with

= 1.09.

Substituting wL/Wp = 1,247 for Mode 3, obtained from Eq. (2.66),

and the Maxwellian distribution for f0 in Eq. (4.8), we have

-0.19WB (Morales and O'Neil),

8W 4 (4.10)

-0.13W B (Dewar) ,

which are plotted in Fig. 4.5. We see that the slopes of the lines

from the simulation, and from the theory of Morales and O'Neil,are very

similar. This is to be expected because our simulation of an initial

value problem resembles the Morales and O'Neil problem, rather than

the Dewar problem. It should be remembered, however, that the theoreti-

cal result is the time-asymptotic value, whereas the measured frequency

shift is an average over the period W t = 6 to 60. It should also be

recalled that the value of WB corresponds to the initial amplitude

of the wave. Since the theoretical result due to Morales and O'Neil

was obtained under the condition that the amplitude variation is very

small, it does not matter much whether the bounce frequency is computed

from the initial amplitude or from the time-asymptotic amplitude. 
In

our simulation, however, the amplitude variation is not negligible; if

the bounce frequency were computed from the time-asymptotic amplitudes,

the points in Fig. 4.5 would be moved towards the theoretical line 
of

Morales and O'Neil.
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4.4 Summary

The nonlinear behavior of monochromatic plasma waves has been

studied over a wide range of wave amplitudes, by use of the low-noise

model based on the hybrid approach.

In the study of amplitude oscillation and Landau damping in

Section 4.2, we have attempted investigation in areas where analytical

approaches are not easily tractable, i.e., in cases where the condition,

W/WB >> (p/vt)
2 , is not satisfied. The results of our simulations show

good qualitative agreement with the theories of Bailey and Denavit,

and Sugihara and Kamimura, who have made the assumption, W/W B >  (vp/vt)2

However, there are significant differences between our simulation results

and the theoretical results of these authors; first, phase-mixing of the

amplitude oscillation is slower than predicted, and second, there exists

no critical value of 7L/WB within our parameter range such as was

found by Sugihara and Kamimura. These results will be helpful in better

understanding the phenomenon, and in developing an analytical theory in

cases where W/WB : (vp/vt)2

In the study of nonlinear frequency shift, in Section 4.3, we have

measured the frequency shift for finite amplitude waves, and compared the

results with theoretical predictions. It has been demonstrated that the

simulation results agree well with the theoretical predictions of Morales

and O'Neil.
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5. SIDEBAND INSTABILITY

5.1 Introduction

In 1968, Wharton et al. reported results of experiments on large

amplitude, longitudinal electron plasma waves, in which not only was

spatial amplitude oscillation of the type discussed in Section 4

observed, but also spatial growth of sidebands separated from the

frequency of the large amplitude wave by the bounce frequency of trapped

66
electrons, WB 66 These experiments have stimulated a number of

theoretical studies that may be classified into two types of approaches.

One is based on a wave-wave interaction mechanism between the large

amplitude wave and sideband waves (Kruer et al.;57 Goldman;67 Goldman

68 69 70,71
and Berk; 6 8 Wong; and Mima and Nishikawa7 0  ). The other is a quasi-

linear approach based on wave-particle interaction (Shapiro and

Shevchenko;72 Bud'ko et al.;
7 3 Manheimer;

7 4 Yagishita and Ichikawa;
7 5

and Brinca 76).

Other laboratory experiments on sideband instability have been

77 78
carried out by Franklin et al., and Jahns and Van Hoven for electron

plasma waves, and by Ikezi et al. for ion waves. These experimental

results have verified some of the predictions of wave-wave interaction

theory applied to a spatial case.7 7 ,7 9 However, there are some obser-

vations which suggest the quasilinear mechanism as an alternative cause

of the instability.7
8

Computer simulations of the sideband instability have been performed

80 11 81
by Kruer and Dawson,80 Denavit and Kruer, and Rosen et al. Kruer

and Dawson studied the instability in a one-dimensional plasma driven

by an external electric field of a given frequency by use of a particle
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simulation model. They observed the growth of sidebands having a

frequency separation consistent with the experimental results of

Wharton et al. It was demonstrated later by Rosen et al. that artificial

removal of trapped particles eliminates the sideband growth. Denavit

and Kruer carried out simulations of a similar problem to make compari-

son between the particle simulation and the Vlasov approach, and found

close agreement between the results of the two approaches. In these

simulations, electrostatic energy of the large amplitude wave was

0.1-1.0 times the initial thermal energy of the plasma. The high wave

energy is required in the particle code since such simulations are much

noisier than real plasmas, as discussed in Section 2.

In laboratory experiments, however, electrostatic energy of the

large amplitude wave is typically much smaller (10- 4 - 10- 3 ) than the

thermal energy. Also, in most of the analytical approaches mentioned

above, it is assumed that the wave energy is much smaller than the

thermal energy. In what follows we shall investigate the sideband

instability, using the simulation model based on the hybrid approach,

in the parameter range which allows us both to make more quantitative

comparisons with existing theories, and to model more satisfactorily

the conditions appropriate to laboratory experiments. The quantitatively

accurate results obtainable by use of this model should lead to better

understanding of the phenomena involved, and refinement of the theory.

5.2 Computations

In the series of simulations to be described in this section, we

have considered an initial value problem, and imposed perturbations at

time t = 0 according to Eq. (3.23). Mode 13 was chosen for the large
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amplitude wave, which we will refer to from now on as the 'main' wave.

Five simulation runs (A - E) were made with the initial main wave

amplitude in the range 0.06 < eEO/mevt p < 0.5. In terms of electro-

-3 -1
static energy, this is between 1.8 X 10 and 1.2 X 10 times the

thermal energy. Waves were also excited initially as sidebands of

Mode 13 according to Eq. (3.23), but with random phases at the energy

-6
level of 10 times the thermal energy.

In all of the computations, 16384 particles were followed in a

system 256 XD long, divided into 256 cells. The continuous Maxwellian

velocity distribution was replaced by 64 beams spaced vt/7 apart.

Velocity-space was covered from -3.79 vt - 5.21 vt by a grid with mesh

size equal to the beam spacing. Periodic smoothing was carried out

every 16 time-steps, a time-step being 0.25/w . Periodic boundary

conditions were applied in space.

Results of a typical simulation are given in Fig. 5.1. It shows

the evolution of the main wave and two test waves. The initial ampli-

tude of the main wave was eEO/mevtwp = 0.12, corresponding to

WB/W p 0.19 , where wB[= (ekEO/me) 1/2] is the bounce frequency of an

electron at the bottom of a potential well of the main wave with wave-

number k 0 . Mode 11 decays first, and then begins to grow. Mode 12

shows an evolutionary pattern similar to that of Mode 11 at early times,

and then begins to grow more slowly than Mode 11. The temporal behavior

of the velocity distribution function at the early times is shown in

Fig. 5.2. It is a plot of the spatially averaged distribution func-

tion in the vicinity of the phase velocity of the main wave. The
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FIG. 5.1. Temporal evolution of sideband instability:

(Initial main wave electrostatic energy/thermal energy) = 7.42 X 10
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FIG. 5.2. Temporal behavior of the spatially averaged

distribution function at short times in the simulation
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shown by arrows. w* is the velocity given by Eq. (5.13).
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distribution function at later times, when the sidebands are growing

steadily, is shown in Fig. 5.3 as a phase-space plot. It is seen

clearly that there are particles trapped near the bottom of the wave

potential wells. We have confirmed that phase-space structure similar

to that shown in Fig. 5.3 persisted throughout the simulation run. This

may be compared with Figs. 3 and 8 of Ref. 80, which show only a

negligible number of such particles to be present. In their simulation,

using a particle code, the number of particles with the velocities in

the vicinity of the phase velocity (u 4 vt) of the main wave is very

small, because the Maxwellian velocity distribution assumed falls off

as exp (-v 2/2vt). Since it is these particles that will stay trapped

near the bottom of the potential wells, a situation such as observed

in Ref. 80 may occur.

In Fig. 5.4 are given the results of two simulations with a larger

amplitude of the main wave than the previous simulation. The growth of

Mode 11, in the lower sideband (k < k ) , is shown in Fig. 5.4(a) both

for growth from noise, and when it is excited as a test wave at t = 0

Figure 5.4(b) shows growth of a test wave in Mode 15, in the upper side-

band (k > k ). Though not shown, we also observed growth from noise

of Mode 15, and other modes, in the simulation carried out without test

waves. The distribution function demonstrated similar behavior to that

shown in Figs. 5.2 and 5.3.

An energy spectrum obtained in one of the simulations is shown in

Fig. 5.5. It was measured at time w t = 175, when the main wave
p

amplitude reaches nearly the fifth minimum in the temporal evolution.

The lower sideband is seen to be larger than the upper sideband. It
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FIG. 5.3. Phase-space plot at t = 96, in the
p

simulation shown in Fig. 5.1. The phase

velocity of the main wave is marked by an arrow.
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FIG. 5.4(a). Temporal evolution of sideband instability:

(Initial main wave electrostatic energy/thermal
-2

energy) = 2.97 x 10 . Main and lower sideband waves.
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FIG. 5.4(b). Temporal evolution of sideband instability:

(Initial main wave electrostatic energy/thermal
-2

energy) = 2.97 X 10 . Main and upper sideband waves.
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instability: (Initial main wave electrostatic energy/
-2

thermal energy) = 2.97 X 10
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should be remembered, however, that the test waves initially decay and

then begin to grow. Consequently, the fastest growing mode (Mode 10)

does not necessarily appear as the sideband peak. Some of the modes,

for example Mode 14, are still below their initial level at the 
time

when the energy spectrum is measured.

A case with a heavily-damped main wave is presented in Fig. 5.6.

In this simulation, Mode 17 was used as the main wave. The test wave

shown was the fastest growing mode. We see that the main wave first

decays, and then undergoes amplitude oscillation 
with slow damping. The

test wave shows continued growth after it has reached an 
energy level

comparable to, or exceeding, that of the main 
wave.

From the results shown, we note the following:

(a) The main wave amplitude shows oscillatory behavior,

corresponding to that predicted by O'Neil for the temporal 
case.

(b) Test waves exhibit initial decay which is stronger 
than the

corresponding linear Landau damping, and then show approximately

exponential growth.

(c) Both sidebands grow from noise with growth rates corresponding

to those of the test waves.

(d) The lower sideband is higher in amplitude than the upper

sideband.

(e) There is some modulation superimposed on the 
growth of the

sidebands. This seems to be correlated with the amplitude oscilla-

tion of the main wave.

(f) In the case of a heavily-damped main wave, test waves exhibit

features similar to (a) through (e).
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FIG. 5.6. Sideband instability with a heavily-damped main wave: (Initial

--

main wave electrostatic energy/thermal energy) = 7.1 X 10-3. The damping

rate and phase velocity of the main wave are YL/Wp - 0.085, and vp/Vt - 3.1

[Eq. (2.66)].



The foregoing features are common to all of our simulations, and

suggest that it might be profitable to divide theoretical description

into two parts: first, the transient processes occurring at the

earliest stages of evolution, and second, the development at later times

when the sidebands are growing steadily.

5.3 Comparison with Theory

In order to explain the sideband instability, Kruer et al.57

considered a simple theoretical model in which the trapped electrons are

treated as a bunched beam of harmonic oscillators of frequency WB '

and obtained a sideband growth rate consistent with the experimental

results of Wharton et al.66 Goldman took a rather different approach.
67

It is known that the time-asymptotic limit of the O'Neil solution
4 8

is a large amplitude BGK mode.
6 5 As long ago as 1962, Pfirsch had

speculated that a large class of BGK modes might be unstable, although

he did not pursue the question.
8 2 Goldman examined the stability of the

BGK modes, and showed that the sideband growth is due to a parametric

type of coupling between waves enhanced by the trapped particles. He

obtained the results of Kruer et al. as a special case in which trapped

electrons are localized at the bottom of the potential wells of a BGK

wave. Goldman and Berk obtained a dispersion relation, in the bunched

beam approximation, including the contribution of trapped electrons to

68
the frequency shift of the large amplitude wave. They showed that

69
the growth rate is enhanced above that of Kruer et al. Wong has

investigated the stability of two types of BGK modes, including the

effects of resonant interaction with both trapped and untrapped

electrons, and obtained results similar to those of Kruer et al. Mima
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and Nishikawa have developed a theory without assuming any particular

form of BGK mode, and predicted sideband instabilities over two wave-

number ranges given by 1k - k01 = (2n + 1)1/2 MB/v or

k - k0 << WB/vp , where vp is the phase velocity of the large

amplitude wave, and n( O) is an integer.7 0 Mima and Nishikawa

later investigated the stability of a BGK mode whose untrapped particle

distribution is chosen to be that given by the Landau linear theory. 7 1

All of the theories discussed so far concentrated on investigation

of the wave-wave interaction mechanism. An alternative approach is a

72quasilinear wave-particle interaction. Shapiro and Shevchenko, and

73
Bud'ko et al., have studied the excitation of sidebands due to

resonant wave-particle interaction, using the O'Neil time-asymptotic

48
solution as their starting point. Bud'ko et al. found that only a

lower sideband satisfying Iw - kv O0.9 WB can be excited. However,

for the parameters used in the experiment of Wharton et al., their theory

does not predict instability. Shapiro and Shevchenko used a different

distribution function for untrapped particles, and found that both

sidebands can be excited with different growth rates. Substitution of

the experimental parameters of Wharton et al. in their theory yields

growing solutions, but the growth rates are much smaller than those

obtained by Kruer et al.57 The stability of the O'Neil solution has

also been investigated by Manheimer, who considered only the particles

trapped near the bottom of the potential wells, and predicted that the

lower sideband is unstable while the upper sideband is stable.74 His

theory is considered to be a lower order approximation to the theories
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of Shapiro and Shevchenko, and Bud'ko et al. In the quasilinear theory

of Yagishita and Ichikawa,75 the stability of the time-asymptotic distri-

bution function found by Al'tshul and Karpman49 (see Section 4) was

studied. It was shown that the trapped electrons can cause sideband

instability through interaction with externally excited test waves.

The theories mentioned so far examine the stability of either a

stationary or time-asymptotic equilibrium state, involving a large

amplitude wave. In contrast, Brinca has used the quasilinear theory

during the transient following application of a large amplitude wave

76
at t = 0. He determined the variation of the sideband growth rate,

as a function of time, from the slope of the averaged velocity distri-

bution function in the vicinity of the phase velocity of the large

amplitude wave.

Examining the theories discussed so far, in the light of the results

of our computer simulations in Section 5.2, it seems appropriate to

compare the simulation results at early stages of temporal evolution

with the theory of Brinca, and at later times with the theory of Kruer

et al. In what follows, we shall, first, consider the quasilinear

wave-particle interaction theory due to Brinca, and then the wave-wave

interaction theory in the bunched beam approximation due to Kruer et al.

5.3.1 Quasilinear Theory

Theory: Consider a large amplitude, electron plasma wave,

excited at time t = 0 , in an infinite collisionless plasma. The

electron motions are described by
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dx dv edt - dt - E sin (wt - koX) , (5.1)
e

where x and v are the position and velocity of an electron, and

O is the frequency of the large amplitude wave. Since EO  is

assumed to be constant, Eq. (5.1) yields the first integral of the

motion,

m ( )2 eE
W =- v - k + cos (W0 t - k x) . (5.2)

0

The distribution function in the presence of the large amplitude

wave is determined by the Vlasov equation,

af af e Bf_ ' + e E 0 sin (0t k x) - O . (5.3)
t + x m 0 0 0 =v

e

Since Eq. (5.1) represents the characteristics of Eq. (5.3) in phase-

space, the solution of Eq. (5.3) is given by

O 2f(x,v,t) f0 ( + ~0(x,v,t) f ( , (5.4)

in the resonant region, v - wo/kO . Here, fo is the initial electron

velocity distribution function, f' denotes the derivative of f
0 0

with respect to v , and 0O(x,v,t) is given by solution of Eq. (5.1) as

O d F(~~) - ( 2 < 1) , (5.5)0 KT , KT

for untrapped particles, and by

= ±. cn [F ( ) t ] (K2 > 1) , (5.6)§0 KT K(
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for trapped particles, where F represents the elliptic integral of

the first kind, dn and cn are Jacobian elliptic functions, t0

denotes the initial value of I , and K , T , 5 and 5 are defined

by

2 2 1 e /2

k0W+eEO B ek0E

(5.7)

1
f = 2 (k x - mot -U ) , sin = K sin

The positive or negative sign is used in Eqs. (5.5) and (5.6) according

to whether 5 , S > 0 , or 5 , S < 0 . Equation (5.4) is valid pro-

vided that the amplitude is small enough to allow a Taylor expansion

of the distribution function about the phase velocity of the large

amplitude wave, i.e. wB/WO << (kovt/WO)2

Having found the solution of the Vlasov equation, the next step

is to average Eq. (5.4) so as to remove fast oscillations occurring

on a time scale l/W 0  and on a length scale 1/kO , and to obtain a

slowly-varying velocity distribution (f(v,wBt)) . After some mani-

pulation, the averaged solution

(f) fo + (w ) , (5.8)

is obtained, in which

(w B 1 + 8 2n Cos (5.9)
0 k0KF(K) ++Q 2n 2 F(K) '

0 n=l Q )

(w) w* E() 2 < 1) , (5.10)
K
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for the untrapped particles, and

8rUB Q2n-1 C (2n-1)Bt

Sk 0 F() (l+Q2n-1 2 cos 2F(~) (5.11)

n=l

(w) = w* [E(Q) - (1 - )F()] 2 < 1 (5.12)

for the trapped particles. In Eqs. (5.9)-(5.12), F(K)[= F(K,f/2)]

and E(K)[= E(K,T/2)] are the complete elliptic integrals of the first

and second kinds, and

WO 4eBW=V k W* -

(5.13)

Q = exp - nF[(1-r2) 1/2]/F(K)

Since K and i are related to the mean velocities defined by

Eqs. (5.10) and (5.12), we see that (wo) , which is a function of K

or T , is itself a function of the mean velocity.

In Fig. 5.7, (w 0 ) is plotted as a function of velocity, with time

as a parameter. It will be recognized from Eq. (5.8) that a plot of

(Wo) indicates the shape of the averaged velocity distribution function

in the resonant region. It will be noted that (wo) develops finer

and finer structure as time increases, resulting in progressively larger

local slope of the velocity distribution function. The application of

the theory is limited to the transient process at the initial stage of

evolution, before the fine structure develops, i.e. up to WBt ~ 2r .

If the averaged distribution function given by Eq. (5.8) is

considered as a slowly-varying 'equilibrium' distribution function,
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FIG. 5.7. Temporal behavior of the averaged distribution function in the resonant region.

v is the phase velocity of the main wave. The other v 's are phase velocities of

test waves. (Adapted from Fig. 1 of Ref. 76.).



then a small perturbation, fl , due to application of a test wave may

be described by the linearized Vlasov equation in the form

1 1 e -(f 0-- + vf e E 0 , (5.14)
t + x m 1 av

where E 1 is the perturbed electric field. Applying linear stability

analysis for perturbations of the form exp[-i(wt-kx)] , propagating

with phase velocities near that of the large amplitude wave, yields

a growth rate of

2

7(t) d k (5.15)
2 k dk Bv '

where 7 << W has been assumed.

Having obtained this result, Brinca simplified it by assuming that

the test waves are described by the warm plasma dispersion relation

2

p (k,) = 1 2 2 2 . (5.16)

W -3k v t

Equations (5.8), (5.15), and (5.16) are then sufficient to obtain the

time evolution of the growth (or decay) rates of the test waves.

Figure 5.8 presents some calculations. It will be seen that the side-

bands decay initially (if they are above the thermal fluctuation level),

and then start to grow; the larger the phase velocity separation between

the test wave and the large amplitude wave, the stronger the initial

damping.
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Comparison with Computations: The theoretical growth rate for the

test waves in the initial development stage has been computed using

Eqs. (5.8), (5.11), (5.12), (5.15) and (5.16). Equations (5.11) and

(5.12) are used since IW/k - w0 /kOI < w* holds for Modes 11 and 12 as

shown in Fig. 5.2. The calculated results are shown in Fig. 5.9 for

comparison with the growth rates measured from the simulation results

presented in Fig. 5.1. Although the evolutionary patterns for Mode 12

from the theory and computation resemble each other to some extent, the

agreement is not good. It should be borne in mind that the theory is

applicable only to cases in which the main wave amplitude variation is

negligible; in our simulation the amplitude actually varies by a

factor of more than two during the period.up to w t = 30 . To obtain
p

better agreement, we have used information from the detailed plot of

the averaged velocity distribution function in Fig. 5.2. We have

computed the growth rate, using Eq. (5.15), at intervals of W t = 4
p

from the local slope of the averaged velocity distribution function at

the phase velocities of the test waves. The results are shown in

Fig. 5.9. There is a striking similarity in evolutionary pattern for

both modes between the measured growth rate and the theoretical one;

there is a difference in w t of about 3 for both modes until
p

W t - 10 , and a difference of about 15 for Mode 11, and 10 for Mode 12,

thereafter.

In seeking an explanation for this phenomenon, it should be recalled

that in the quasilinear theory of Brinca there is an implicit assumption

that the waves respond instantaneously to the slope of the averaged

velocity distribution function. However, since transient phenomena
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FIG. 5.9. Test wave growth rate at short times in the simulation shown in Fig. 5.1.

Brinca (1) is the theoretical result calculated by the use of warm plasma dispersion

relation [Eq. (5.16)]. Brinca (2) is the theoretical result obtained from Fig. 5.2.



are involved, it is more reasonable to assume that some time elapses

before the macroscopic effects of the resonant wave-particle inter-

action appear. We may estimate this time delay as follows. From

Fig. 5.2, the width of the bump in the velocity distribution function

may be estimated to be 8v - 0.6 v t . Considering this bump as a set

of streams with continuously distributed velocities, providing a con-

tinuous range of frequencies kv , we obtain the rise time, Td , of

a perturbation from the approximate equality

kvT . (5.17)
d 2

Substituting appropriate numerical values into this expression yields

w T 10 for Mode 11, and 9 for Mode 12. These results do not fully

account for the discrepancies, of course, but provide a good intuitive

explanation.

5.3.2 Wave-Wave Interaction Theory

Theory: The simplest model of sideband instability which

incorporates wave-wave interaction is that involving the bunched beam

approximation. In this approximation, the equilibrium distribution

function is assumed to contain trapped particles localized at the

bottom of the potential wells of a large amplitude wave propagating at

phase velocity v . The trapped particles act coherently as harmonic

oscillators of frequency wB[= (ek0E/me) 1/2]. The effects of trapped

particles other than those near the bottom are neglected.
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The trapped electrons are governed by the equation of motion

dx n 2 2 1 e
S- W - x - v t) E(k,W)exp[- i(wt-kx )]dkdw

dt2 B n nO p 2 m n
dt (2n) e

(5.18)

where x is the position of a particle in the n-th potential well,
n

XnO + v t is the position of the n-th well, and E(k,w) is the Fourier
p

transform of the perturbation electric field. The effects of the

electric field of the large amplitude wave are taken care of by the

first term on the right-hand side of Eq. (5.18).

Treating the trapped electrons as a source charge density intro-

duced into a plasma of permittivity E (k,) , we have

ikC (k,w)E(k,W) p(kw) (5.19)
P EO

where p(k,W) is obtained from the Fourier transform of the displace-

ment of the trapped particles given by Eq. (5.18). Some manipulation

of Eqs. (5.18) and (5.19) yields

2

WT E(k+nko,W+nWO)
E(k,W) = 2 2 E (k,W)

p B n

(5.20)

S2 1/2 2O

0 0

where NT  is the number of trapped electrons in each potential well.

Equation (5.20) shows that perturbations at w,k are coupled to an

infinity of perturbations at UW+nw 0 , k+nkO
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Since plasma does not support wave propagation at frequencies

greatly different from the plasma frequency, wp , the two waves E(k,u)

and E(k-2k0 , w-2w0) may be expected to be dominant for w - W *

Retaining only these two terms yields two coupled mode equations for

E(k,w) and E(k-2kO, u-2W0 ) . The dispersion relation results from

equating the determinant of their coefficients to zero. We obtain

2

1 T 1 1 , (5.21)
2_ 2 (k,W) p(k-2k 0, W-2)

where ) = w - kv . If the large amplitude wave is not too large, the

warm plasma approximation for E (k,w) [Eq. (5.16)] may be used.

Comparison with Computations: In Fig. 5.10 are plotted the theo-

retical growth rates for Modes 8-12, obtained by solving Eq. (5.21)

combined with Eq. (5.16). To make quantitative comparisons, the growth

rates of the unstable modes were measured in the five simulations (A-E)

described in Section 5.2. The growth rates were obtained from energy/

time plots for each unstable mode, similar to those shown in Figs. 5.1

and 5.4, and plotted in Fig. 5.10. The errors involved in measuring

the growth rates of the sidebands were about 10%. We see that there is

good agreement for small values of WB , but that the measured growth

rates tend to be larger than the theory predicts for large values of

wB . In considering the discrepancies, it should be remembered that

the theory is not valid for very large amplitude main waves, i.e. we

require E2/4TnkBT << 1 , and that values of the bounce frequency, WB

used in this plot are not those corresponding to the initial amplitudes
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of the main wave, but have been estimated from the expected time-

asymptotic amplitudes indicated by dashed lines in Figs. 5.1 and 5.4.

5.4 Comparison with Experiments

In comparing the results of our simulations with those of labora-

tory experiments, 6 6'7 7 '7 8 it should be noted that the simulations were

carried out for an initial value problem, rather than a boundary value

problem. Since laboratory experiments deal with spatial phenomena,

direct quantitative comparison may not be appropriate. Under certain

conditions, however, it may be possible to transform an initial value

problem into a boundary value problem so as to allow quantitative

comparison with the experimental data. For example, as found by Lee

and Schmidt,55 the O'Neil solution for a temporal case can be trans-

formed into a spatial solution by replacing the normalized time,

W Bt , and the parameter 7L/WB , by x/'B and (LXB , where XB = w/kwB

and L = L/( /ak) .

In making this transformation, it should be remembered that in the

simulation the system length is finite, and only a finite number of

wavenumbers are available with equal separation 2-/L . As a conse-

quence, it may well be that the fastest growing mode observed in the

simulation is not the fastest growing mode predicted by theory for an

infinite plasma. This implies that an accurate measurement of the

dependence of the sideband peak frequency separation, AW , and side-

band growth rate, 7 , is not available from our simulations. Neverthe-

less, the data plotted in Fig. 5.10 seem to suggest 7y E0 , with

a > 1/2 , which is to be compared with the experimental observations

1/2 1/2 77
that w s E0  , 7 = E by Franklin et al., that

0 0
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/2 - E1.2 0 is a constant) by Jahns and Van 
Hoven,

and that by Wharto0 0 n e 66 These measurements could be

made in the simulation, 
of course, by making 

the system longer, but 
we

did not pursue this 
because of the high costs involved. 

Even so, a

number of characteristic 
features of the laboratory 

observations on

sideband instability correspond 
to those described in 

Section 5.2. In

fact, all of the features (a)-(e) 
predicted by the 

computer simulation

were observed in the laboratory experiments.

In terms of the 
strength of the 

main wave,

11,80,81 and the laboratory

between previous computer simulationst in the abor ain

66,77,78 Our simulations were carried out in the 
main

experiments. In the previous simu-

wave amplitude range 0.06 < eEo/meVtWp < 0.50. In the previous simu-

lations, the range was 0.5 < eE /mevtWP 0.7. Note, however,

the amplitude quoted is the maximum level 
reached at the end 

of the

period during which the system was excited externally 
at the frequency

of the main wave. On the other hand, the main wave amplitude in the

of the main wave. on te o r h , (Wharton et al.),

laboratory experiments was 2 X 10 -< eE0/m < 0.02 ( harton et .3

< 0.1 (Franklinet al.), and 0.03 < eE/m eVtp 0.3

(Jans and Van ven). t will be seen, therefore, that our simulations

(Jahns and Van Hoven). to the laboratory experi-

were performed for 
conditions more appropriate 

to the laboratory experi

ments than the 
previous simulations 

of sideband instability.

5.5 Summary 

a

In this section, we have 
simulated the sideband 

instability as an

In this section, existing theories and experi-

initial value problem for comparison with exting 
theories and explicable

mental results. The initial development 
has been shown

by the quasilinear 
theory of Brinca 

in cases where 
the main wave
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amplitude is relatively small (WB/Wp p 0.2), and the test wave growth

(or damping) rate is not too large compared with its frequency

(y « w)

The later stages of evolution of the sideband instability, after

one or two phase-space rotations of the particles have been completed,

have been shown to be well described by the wave-wave interaction theory

in the bunched beam approximation of Kruer et al. For very large main

wave amplitude (WB/Wp > 0.2), the simulation gives higher growth rate

than the theory predicts.

Comparison with the laboratory experiments has shown that many

features of the instability observed in our simulation at similar signal

levels are consistent with the experimental observations, account always

being taken of the fact that the simulation is for temporal evolution,

and laboratory experiments for spatial evolution. The dependence of

the frequency separation, Aw , and sideband growth rate, 7 , upon the

wave amplitude, EO , still need to be checked.
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6. SATELLITE GROWTH

6.1 Introduction

The computer simulations to be described in this Section were

stimulated by laboratory observations by Jahns and Van Hoven of

satellite growth at frequency U2(= 2w0 - W1 ) when a large amplitude

signal at U0 , and a small amplitude signal at t1 were excited

simultaneously. 8 3 Jahns and Van Hoven interpreted the satellite growth

as being due to four-wave passive coupling. They applied a perturbation

expansion method8
4 of solving the Vlasov and Poisson equations to a

spatial problem appropriate to their experiment, and obtained a solution,

describing the spatial evolution of the satellite. However, the

predicted dependence of the satellite growth rate upon the amplitude of

the signal at UO did not fit the observed dependence. Jahns and

Van Hoven ascribed the discrepancies to dissipation, higher-order

processes, and wavenumber mismatch.

DeNeef made similar observations to those of Jahns and Van Hoven

in his experiments with a large amplitude wave and a small amplitude

wave launched simultaneously.86 He considered the small amplitude wave

as a slow modulation of the amplitude and phase of the large amplitude

wave, and calculated the amplitudes of the small amplitude wave and

the satellite wave as a function of position. His calculation showed

agreement with the experiments for the former, but not for the latter.

In particular, the energy level of the satellite wave observed in the

experiment was 90 dB below the theoretical prediction. DeNeef

suggested that the discrepancy might be due to the strong dependence

of the satellite behavior on the nonlinear wavelength shift of the
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large amplitude wave. In his theory, he used the wavelength shift

calculated from the theory of Morales and O'Neil. 6 0

Brinca considered such a process for the analogous temporal problem

in which the synchronism relations

2kO = kl + k2 , 2W0 = 1 + W2 ' (6.1)

are satisfied.87 He obtained coupled-mode equations which describe

the temporal evolution of the wave amplitudes. The theory failed,

however, to give either the observed rapid growth rate, or the observed

satellite energy level.

In what follows, we shall demonstrate good agreement between com-

puter simulations and theoretical predictions based on DeNeef's method

applied to a temporal problem rather than a spatial one. Unlike DeNeef,

we use the measured nonlinear frequency shift in the calculation of the

wave evolution. The computer simulation is discussed in Section 6.2.

The theory is described in Section 6,3, and compared with the simulation

in Section 6.4.

6.2 Computations

In the simulations to be described,16348 particles were followed

in a system 256 XD long, divided into 256 cells. The continuous

Maxwellian distribution was replaced by 64 beams spaced vt/7 apart.

Velocity-space was covered from -4.5 vt - 4.5 vt by a grid with mesh

size equal to the beam spacing. Periodic smoothing was carried out

every 16 time-steps, a time-step being 0.25/p . Periodic boundary

conditions were applied in space.
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Perturbations of the form given by Eq. (3.23) were applied in

Modes 13 and 12 at t = 0 . Figure 6.1 shows the results of the simu-

lation for two different main (large amplitude) wave amplitudes, and

three different test (small amplitude) wave amplitudes. It will be seen

that in each case the main wave evolves almost exactly as a single

large amplitude wave (compare with Fig. 4.1), i.e. the main wave ampli-

tude is not large enough to cause appreciable sideband growth, due to

trapped particle instability of the type studied in Section 5, on the

time scale for which the satellite grows and saturates. The test wave

follows a very similar evolution to that of the main wave. The satellite

grows from noise, saturates at a level comparable to that of the test

wave, and seems to show oscillatory behavior thereafter.

From Fig. 6.1(a)-(c), we observe that the behavior of the test

wave and the satellite is almost identical for different test wave

amplitudes, except that the curves are shifted vertically by an

amount which scales linearly with the test wave amplitude. This is so

only when the test wave amplitude remains small compared with the main

wave amplitude. If increased progressively it finally disrupts the

particle trapping by the main wave, and hence affects the main and test

wave evolution. From Fig. 6.1(c)-(e) it will be seen that the growth

rate of the satellite seems to decrease as the main wave amplitude

88
decreases.

When the roles of Modes 12 and 14 are switched, Mode 12 is observed

to grow from noise, reach the level of Mode 14, and finally exceed it.

We have confirmed that halving the beam spacing changes the results only

in minor details.
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FIG. 6.1. Temporal evolution of main, test, and satellite waves.

(a) (Main wave electrostatic energy/thermal energy) = 1.86 X 10-3

(Test wave electrostatic energy/thermal energy) = 4.18 x 10-5
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FIG. 6.1. Temporal evolution of main, test, and satellite waves.

(b) (Main wave electrostatic energy/thermal energy) = 1.86 X 10-3
-5

(Test wave electrostatic energy/thermal energy) = 1.16 x 10-5
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FIG. 6.1. Temporal evolution of main, test, and satellite waves.

(c) (Main wave electrostatic energy/thermal energy) = 1.86 X 10-3

(Test wave electrostatic energy/thermal energy) = 1.16 X 10-6
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FIG. 6.1. Temporal evolution of main, test, and satellite waves.

44

(d) (Main wave electrostatic energy/thermal energy) = 7.25 X 10-
-6

(Test wave electrostatic energy/thermal energy) = 1.16 x 10-
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FIG. 6.1. Temporal evolution of main, test, and satellite waves.
(e) (Main wave electrostatic energy/thermal energy) = 1.96 X 10-4

(Test wave electrostatic energy/thermal energy) = 1.16 X 10-6
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6.3 Theory

At time t = 0 , the total electric field due to the main wave

and the test wave is given by

E(x,0) = [EO exp ik x + EE0exp i(k 0 - Ak)x) + (c.c. , (6.2)

where E 0 is the test wave amplitude, and c.c. denotes complex

conjugate. When E is small, Eq. (6.2) can be written as

E(x,0) c2(x)E0 exp[ik x - O(x)] + [c.c.) ,

c2(x) = exp (E cos Akx) - 1 + E cos Akx , (6.3)

O(x) = E sin &kx

This shows that the test wave can be regarded as (spatial) modulation

of the amplitude and phase of the main wave when C << 1

In the absence of modulation, the electric field of the main wave

is given by

WBt

Eu(x,t)= E[exp fB Q(t')dt' exp[-i(w0 t - kOx)] + [c.c.),

0

(6.4)

(t')= - [i6w(t') + 7 (t')] , t' = Bt

where 6w is the nonlinear frequency shift, and 7 is the damping rate

of the main wave. It is assumed that 6w and 7 are functions of

amplitude and time only through the product WBt , and that WB is

independent of time. The use of the form given by Eq. (6.4) would be

valid if 7L/WB <<: 1 , where 7L is the linear Landau damping rate of

48
the main wave.
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To incorporate the slow amplitude and phase variations in space

due to the presence of the test wave, E0  is replaced by c2(x)EO ,

and the phase 0(x) defined in Eq. (6.3) is included. The modulated

wave is then given by,

c(x)wBt

E (x,t) .= c 2 (x)E exp ( f (t')dt'

(6.5)

X exp(i[w 0 t - kox + 4(x)]) + (c.c.)

Equation (6.5) gives a solution in space for a given amplitude, c2(x)EO

and initial phase, 4(x) . If 6k is given, the solution of Eq. (6.5)

is correct only for time t < 2/6kvp , where vp is the phase

velocity of the main wave.

To obtain the temporal evolution of the Fourier modes, Eq. (6.5) is

Fourier-transformed in space by the relation,

Em(k,t) =fdx exp(-ikx)Em(x,t) (6.6)

We obtain, after some manipulation,

IEm(k,t)l Eu(t) 6(k-k O ) + E[ (+A(t)) 2 + B2 t)/28(k-k + &k)

+ E[A 2 (t) + B2 (t)]
1 /2 8(k-k 0 -Ak) + 0(E 2 )I ,

(6.7)

where 8( ) is the Dirac delta-function, and
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tBt

Eu(t) = E0 exp -iwt + Q(t')dt' + [c.c.),

0

BB

0

W t

B(t) = 8w(t)t - Bj 8w(t')dt . (6.8)

0

Equation (6.7) shows that the main wave is unchanged to order e,

and predicts the existence of a satellite at k0 + Ak . Note that the

satellite is linear in the test wave amplitude, EEO , consistent with

the results of the simulation shown in Fig. 6.1(a)-(c). The change in

the growth rate to be seen in Fig. 6.1(c)-(e) when the main wave ampli-

tude is varied, is suggested by Eq. (6.7), since A(t) and B(t)

depend on the main wave evolution.

6.4 Comparison with Simulation

To make calculations from Eq. (6.7), we need to know values of 8w

and 7 to be substituted in Eq. (6.8). Although the nonlinear frequency

shift, 8w , and growth rate, y , have been predicted theoretically,
4 8' 6 0

we prefer to use s8(t) and 7(t) determined from the results of our

simulation. This avoids error due to the observed main wave evolution

not being exactly as these theories predict. To determine 8w(t) and

y(t) , we have first tabulated the phase change and amplitude of the

complex Fourier amplitude of the main wave after every time-step.
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Since these quantities contain large ripples, we have smoothed them

using the least-square polynomial of degree one through five successive

amplitudes. In Fig. 6.1 are plotted the theoretical calculations from

Eq. (6.7) using these values. We see that there is good agreement

between the theory and the simulation. In particular, the theoretical

growth rate of the satellite at the earliest stage increases as the

main wave amplitude increases, in very good agreement with the simulation.

It is also significant that in each case the observed satellite energy

level is in agreement with the calculated one. Although the calculated

behavior of the test wave agrees well with the simulation, detailed

observation shows that the simulated test wave first damps at the

linear Landau damping rate, and then at the increased rate in agree-

ment with the calculated one.

6.5 Summary

We have studied the temporal behavior of the satellite wave pro-

duced when a large amplitude electron plasma wave and a small amplitude

test wave are launched simultaneously. It has been shown that a theory

which treats the test wave as a slow modulation of the amplitude and

phase of the main wave explains well quantitatively the rapid growth

and energy level of the satellite observed in our computer simulation.
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7. CONCLUSIONS

In Sections 2-6, we have studied linear and nonlinear phenomena

associated with electron plasma waves, using a low-noise hybrid simu-

lation model. Despite its attractive features, little use had previously

been made of this model since it was proposed by Denavit in 1972.6

In Section 3, the model was first studied in detail, and demon-

strated to simulate precisely the linear wave dispersion characteristics

predicted by theory for long wavelength collective behavior. This

verification of the validity and effectiveness of the simulation model

is very important as a starting point for the subsequent study of non-

linear phenomena. It also serves to establish the validity of the

widely-used Cloud-in-Cell model, and the Langdon theory describing the

finite-size particle model. Quantitative results in the very low

energy range discussed here have never been obtained previously with

such a high degree of accuracy with the simple particle models of

Section 2.

In Section 4, the low-noise model was used to investigate the

behavior of a monochromatic wave in both the linear and nonlinear

regimes. It was found that existing nonlinear theories are qualitatively

in good agreement with the simulation results, but that there are some

significant differences. In particular, the phase-mixing has been

found to be slower than predicted. A new contribution of this section

is a measurement of the nonlinear frequency shift, which is shown to

vary as El/2

Section 5 was devoted to the investigation of the sideband, or

trapped-particle, instability. Very good agreement was obtained for
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WB/Wp < 0.2 between the results of the simulation, and a simple

theory by Kruer et al. and a quasilinear theory by Brinca. We have not

studied in detail the characteristics of the sideband instability for a

heavily-damped main wave. This problem remains to be investigated

further by both simulation and theory.

In Section 6, we have studied nonlinear process involving coupling

between a test wave and a large amplitude wave to produce a satellite

wave. A simple theory,based on modulation of the large amplitude wave,

was shown to explain the behavior of the satellite wave. This process

may have important consequences in connection with the sideband insta-

bility discussed in Section 5: when a test wave in one sideband is

launched at a level above the fluctuation level, as is often done in

experiments on the sideband instability, a corresponding wave in the

other sideband may grow rapidly to a comparable level to that of the

test wave, before the effects of the trapped particle instability

discussed in Section 5 come into play. As a consequence, this nonlinear

process may, for example, affect the measured energy spectrum indepen-

dently of the sideband instability.

We wish to emphasize in connection with Sections 3-6 that all of

the simulations that have been presented were carried out under conditions

for which the assumptions of relevant theoretical models could be

approached, and in realistic energy ranges compared with those under

which laboratory experiments are performed. It should be noted in

relation to the latter, however, that our simulations have been

concerned with temporal variations in a periodically bounded system,

rather than with spatial variations in an effectively unbounded system.
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Although we have investigated only one-dimensional problems, it

seems straightforward to extend the hybrid simulation model to two and

three dimensions. The effects of magnetic field could also be included

at the cost of increased complication. The smoothing operation becomes

more involved and time-consuming as the dimensionality is increased,

and magnetic field is included. Even if it may n6t yet be economically

feasible to extend its use to multidimensional problems with magnetic

field included, the hybrid simulation model can serve very well, with

reasonable cost, to achieve a very low fluctuation level given the

capacity of currently available computers.
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APPENDIX: DERIVATION OF WEIGHTING FUNCTIONS

Derivation:

Consider a smoothing operation in velocity-space,6

f(v i ) = f(v)w(vi-v) , (A.1)

V

where v. denotes the i-th velocity grid point, and the summation is

over particle velocity, v . The n-th order moment of the distribution

function before smoothing is

(vn) = vnf(v) (A.2)

V

After smoothing, the n-th order moment is given by

(")n = v n T ( v i )  (A.3)

i

Substituting Eq. (A.1) into Eq. (A.3) and equating (vn) and (,n

yields

n n
v w(v. - v) = v (A.4)i

for any value of v

Velocity, v , can always be expressed as

v = v. + 86v
J J

= (j + r)Av (0 r r 5 1) ,

(A.5)
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where v. [= jAv] denotes the nearest velocity grid point such that

v. v , 6v. is the increment from the grid point, and ,v is the

velocity grid size. Substituting Eq. (A.5) into Eq. (A.4), and letting

p = i - j , gives

n n
(j + p) w[(p - r)Av ] = (j + r) (A.6)

p

Using the binomial expansion, it will be seen that Eq. (A.6) is satis-

fied if

pmw[(p - r)Av] = rm (m = 0, 1, ... n) . (A.7)

p

m
Consider the Lagrangian interpolation of the function r , with

n + 1 points, given by8 9

s

pA (r) = r (A.8)p
p=l-s

(n+1)
where the A (r) are the Lagrangian coefficients with 0 5 r ! 1 ,

p

and s is an integer. Since m 5 n , the interpolation is exact.

Comparing Eqs. (A.7) and (A.8), it follows that the desired weighting

function may be given by

(n+1)
w[(p - r) Av] = A (r) . (A.9)

p

Rewriting Eq. (A.9) gives

w(v) = A ( n + l) v - [(p - l)Av v p Av] , (A.10)
p ( V

where 1 - s < p ! s
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When n is odd, the weighting function is given by Eq. (A.10)

with s = (n+l)/2 . When n is even, the Lagrangian coefficients do

not give even weighting functions. In this case, they may be obtained

by symmetrization as follows,

1 (n+l) n n-A(n/2) 1 + + / 2 + 1 Av _-t -
2 -(n/2) 2 1 2

W(V) 1 A (n+l) +A (n+l) -P vw(v)= - + Ap -p + -)v v pv

1 (n+l) + v n n
A-(n/2) 1 2 Av) AV

(A.11)

where 1 - s < p < s , and s = (n + 2)/2

Although the weighting functions were derived for velocity-space,

Eqs. (A.10) and (A.11) can be used for coordinate-space by replacing

v by x

Examples: For n=l1 , Eq. (A.10) is written as

(2) vv
A 2) 1 + -- (-Av ! v s 0) ,

w (v) = (A.12)

(2) = 1 - (0 v gv)

The smoothing operation using this weighting function conserves particles

and momentum.
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For n=2 , applying Eq. (A.11) yields

1 [(3) ( - (3) )] 3v 1 v2

1AV) 0 Av aV q (A

w(2)(v) = (0 < v : Av) ,

1 (3) v) 1 v v-A ()2 - = 2 - 1 - ) (Av v 5 2Av)
2 -1 v AV Av AV

In the interval, -26v < v 5 O , w(2)(v) is defined by symmetry. This

weighting function conserves particles, momentum, and energy. The

functions w(1)(v) and w(2)(v) are shown in Fig. A.1.

0 (2)

n=1 n=2

0.0625

0 T-2v -Av 0 Av 2Av

FIG. A.1. Linear (n = 1) and quadratic (n = 2) weighting

functions. (Adapted from Fig. 3 of Ref. 6.).
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